Broiler production with reduced antibiotics. The essentials

poultry broiler shutterstock 1228945888 small

By Dr. Inge Heinzl, Marisabel Caballero, Dr. Twan van Gerwe, and Dr. Ajay Bhoyar – EW Nutrition

Concerns about antibiotic resistance in humans and production animals have prompted a push across the board to reduce antibiotic use, including in livestock rearing. To meet these demands, the industry must keep the pathogenic pressure in production units as low as possible, enabling production with no antibiotics or minimum use of antibiotics.

Broiler production

The 3 essential steps for reducing antibiotics in broiler production

In the following, we discuss experience-based insights and practical advice concerning best practices for broiler meat production with reduced antibiotic use, focusing on the following points:

  • Farm biosecurity
  • Management of the broiler house, including cleaning & disinfection, and environment & litter management
  • Management of the flock, including DOC quality, disease prevention, and nutrition

1. General farm biosecurity

Biosecurity is the foundation for all disease prevention programs (Dewulf et al., 2018). Thus, it is essential in antibiotic reduction scenarios. It includes all measures taken to reduce the risk of introducing and spreading diseases, preventing diseases, and protecting against infectious agents. Its fundament is the knowledge of disease transmission processes.

The application of consistently high biosecurity standards substantially reduces antimicrobial resistance by preventing the introduction of resistance genes into the farm and lowering the need to use antimicrobials (Davies & DWales, 2019).

First of all: everyone must act in concert!

Biosecurity is one of the preconditions for the success of an ABR program, and it is crucial to bring all workers/staff on track through regular training on the best practices and their subsequent rigorous implementation.  The biosecurity plan can only be effective if everyone on the operation follows it – all the time. Farm managers, poultry workers, and other persons entering the facility should adhere to the farm biosecurity measures, 24/24h – 7/7d.

Separation helps to prevent the spread of pathogens

One essential component for biosecurity is implementing a “line of separation” for the farm and each house. It is vital to have a good separation between high and low-risk animals and between areas on the farm that are dirty (general traffic) and clean (internal movements). In this way, it is not only possible to avoid the entrance but also the spread of disease, as potential sources of infection (e.g., wild birds) cannot reach the farm population.

The farm must be well isolated, not allowing the entry or passage of persons who do not work there and animals, including pets.

Inside the farm, the walls of the poultry house form the first line of separation, and the “Two-zone Danish Entry Protocol” constitutes a second line. This system utilizes a bench to divide the anteroom of a poultry house into two sides (outdoor / ‘dirty area’ and indoor / ‘clean area’). At a minimum, footwear should be changed, and hands washed or disinfected when passing over the bench; it is even better when workers have house-specific clothing and hairnets when entering the poultry area.

Safety procedures on the poultry farm

Figure 1: Safety procedures on the poultry farm – the Danish entry method

The room is divided into “dirty” and “clean” zones.

  1. After the entrance from outside, workers/visitors step into a disinfectant boot tray.
  2. They take off their street shoes and leave them on the dirty side of the entrance zone.
  3. Then, they turn from the dirty to the clean side by swinging their legs without touching the floor.
  4. They wash their hands and disinfect them by using the hand.
  5. They must put on an overall, cap, mask, and boots of the poultry house.
  6. Completely clothed, they can enter the poultry house.
  7. When they leave the house, a reversed process must be followed.

Still more needs to be done to prevent the entrance and spread of disease.

Separate materials for each house

For each house, separate materials must be used, keeping a dedicated set of tools and equipment necessary for daily work.

Very important: no materials should be moved from one house to another unless thoroughly disinfected. Crates for bird transport in the case of thinning (partial depopulation of a broiler flock) are an important example.

Practice clean disposal of mortality

First, dead birds’ removal must be frequent (minimum twice a day) as carcasses are a source of infection. The next point is to make sure the route of birds’ disposal is strictly unidirectional, and the buckets or wheelbarrows for the transport of the dead birds do not reenter the poultry house. Finally, the carcasses should remain outside the farm or as far from the buildings as possible until collection, incineration, or composting.

2. Broiler house management

After the general organization on the farm, let’s move on to the poultry houses.

Cleaning and disinfection of the house are the first steps – and check their efficacy!

Cleaning and disinfection are essential components in preventing the persistence and spread of pathogens. Both together aim to decrease microbial numbers on surfaces (and in the air) to a level that will ensure that most -if not all- pathogens and zoonotic agents are eliminated.

Cleaning refers to the physical removal of organic matter and biofilms, so the microorganisms and pathogens are afterward exposed to the disinfectant.

For effective cleaning and disinfection, the all-out/all-in system has proven of value. When birds are collected, all organic material, including feed residues and litter/feces, is removed.

Effective detergents and hot water are used to remove any grease or organic material. Pay special attention to the floors! Also, all surfaces and equipment should be sufficiently cleaned and given final disinfection.

Cleaning is crucial

A study by Luyckx and collaborators (2015) revealed that the mean total aerobic bacterial count on swab samples taken in broiler houses decreases significantly already after cleaning (figure 2). Good cleaning not only strongly reduces microbiological contamination and organic material but also ensures that the subsequent disinfection has a stronger impact on the remaining microorganisms. Consider that all disinfectants, even in high concentrations, are barely effective in the presence of organic material.

reduction of bacteria on surfaces after cleaning and after cleaning and disinfection

Figure 2: % of reduction of bacteria on surfaces after cleaning and after cleaning and disinfection (adapted from Luyckx et al., 2015)

Keep an eye on cleaning & disinfection efficacy

After cleaning and disinfection are complete, it is good practice to check the floors for Total Viable Count (TVC), Salmonella, and E. coli to test the efficacy of the cleaning and disinfection process. Recommended levels of TVC should be less than ten colony forming units per square centimeter (CFU/cm2), and E. coli and Salmonella levels should be undetectable.

When high TVC are found, the cleaning and disinfection procedure must be evaluated, including the products (a rotation is recommended) and their application (e.g., dosage, dilution, water temperature, and exposure time). Also, possible reinfection by vermin or personnel during the downtime must be controlled.

Downtime:

After cleaning and disinfection, a down-time time of 10 days allows disease-causing pathogens to die (UC Davis, 2019).

Cleaning and disinfection of the waterline against biofilm

In the waterlines, the build-up of biofilms can be an issue. Biofilm is a sticky film that can be found inside water lines, regulators, and nipple drinkers. It starts when bacteria attach to a surface and produce a matrix of extracellular polymeric substances (EPS), including proteins and sugars, giving the biofilm the stickiness that traps other bacteria and organic matter. It provides the bacteria with protection from the external environment, and thus they multiply and thrive.

Biofilms not only block the water flow, but they can also include pathogenic bacteria. Thus, the waterline must be regularly cleaned and disinfected, not only between flocks but also within each flock.

waterline in biofilm

Between flocks, an effective waterline cleaning should include:

  • Application of hydrogen peroxide at high concentration, leaving it in the system for 24-48 hours to remove the biofilm from the pipelines)
  • Flush the line to remove the detached biofilm, also activate the nipples with a broom or stick to flush them
  • Immediately before the placement of the new chicks, the water lines should be flushed to have fresh drinking water available to the chicks
  • The water pressure must be adjusted so that a droplet of water is visible at the end of each nipple, and the drinkers are put to the correct height to stimulate water intake and avoid spilling

During the life of the birds, a water disinfectant should be used to prevent biofilm formation, e.g., hydrogen peroxide in weekly applications or the continuous use of chlorine. Also, flushing is a good practice during the whole cycle to make sure that biofilm is removed and the birds count with fresh drinking water.

To a certain extent, biofilm build-up can be prevented by using organic acidifiers in the water, which improves the sanitizers’ effectiveness and reduces bacterial growth in water lines.

Correct ventilation helps to prevent respiratory diseases

To keep broilers healthy, providing optimal ventilation in the poultry house is crucial. CO2 and temperature are the most critical parameters. CO2 should never exceed 2500 ppm and should be monitored continuously, most notably in the early morning before birds increase activity (e.g., eating). Ventilation rates should be adjusted to keep CO2 below this limit. Draught or cold spots resulting in uneven distribution of birds in the house should be avoided, and causes should be investigated and repaired immediately.

Incorrect ventilation often is the reason for respiratory diseases and the need for antibiotic treatment. No matter if natural or power ventilation is used, proper monitoring of the system is indispensable to ensure the well-functioning of the equipment and, therefore, appropriate air quality (Neetzon et al., 2017).

Litter management to keep diseases in check

Effective litter management is another step on the road to keeping the birds healthy. Dryness of litter and ammonia level at bird’s level are two significant key success factors in raising broilers. Dry litter preserves the footpads, so litter material should have a good moisture-absorbing capacity (e.g., chopped straw, wood shaving, rice husks, sunflower husks). When using build-up litter, litter sanitation and treatments need more attention.

Litter treatment (with acidifying or binding substances) and adequate ventilation are the most practical measures to control ammonia and improve littler quality (Malone, 2005). Keep litter temperature at 28 – 30°C (82.4 – 86°F), and use only litter tested or certified to have a TVC <10 CFU/g.

3. Flock management

The basis: healthy, high-quality day-old chicks

To produce good-quality day-old chicks, the parent flocks (PS) must be of good health status. PS should be free from vertically transmitted diseases such as Mycoplasma and Salmonella and be vaccinated/protected against important diseases:

  • Salmonella pullorum/Salmonella Gallinari should be assessed in PS by RPA serology in week 25-30, at least 60 samples per flock.
  • Mycoplasma gallisepticum should be checked by RPA/ELISA serology on a regular basis, preferably at least monthly, with a minimum of 30 samples per flock.

Parent flock vaccination leads to the production of maternal antibodies that help prevent horizontal infection (from the broiler farm environment) in chicks at an early age. This type of prevention is the primary function of some vaccinations, such as against Gumboro disease.

An essential part of the broilers’ life occurs already in the hatchery. Single-stage incubation is recommended, and all floor eggs and dirty nest eggs should be excluded to assure the best day-old chick quality.

Comfortable conditions bring chicks to eat

The brooding phase needs special attention; it is about welcoming the chicks and making them comfortable in the house environment. For this, enough litter needs to be provided, the environment must be managed, and feed and water must be supplied.

At least 24 hours before chick placement, the house and floor temperature are increased to a minimum of 34°C and 28°C, respectively. Proper ventilation and lighting are also essential. These conditions need to be monitored and adjusted after the placement so the chicks feel comfortable and start feed and water consumption. Checking chick behavior is crucial during the first hours after placement.

Upon the placement of the chicks, it is recommended to have pre-starter crumble feed available on top of brooder paper underneath the drinking line. To stimulate early feed and water consumption, gently place the chicks onto that paper. The target is to have 100 % of chicks with crop filled within 48 hours of chick placement.

Reduce the stocking density

chickens feeder In general, high stocking density may restrict bird movement, interfere with airflow, and increase litter moisture and microbial growth, including pathogens, which potentially impairs broiler health, welfare, and performance.

When reducing antibiotics, increase the space per bird by 0.05 ft2/46 cm2 per bird compared to your current conventional program. A lower stocking density helps keep litter moisture at a minimum, which reduces the shedding of cocci oocyst and pathogenic bacteria over the population.

Feed and water access must be granted to all animals at every moment. The number of chickens per feeder or drinker depends on the type of equipment used.

Consistent observation of the flock

To recognize emerging health issues, producers should critically observe the behavior of birds every day. On which points should they focus?

  • First, when entering the house, birds’ behavior and response to the poultry worker should be observed with attention. Note the spread of birds throughout the house.
  • Note birds’ drinking and eating behavior. Feed and water intake should be recorded daily, always at the same hour.
  • The quality of the fresh fecal droppings should be judged. Any changes in the fecal droppings (loss of consistency) can help notice emerging disease and take measures against it.

Especially during and after feed change, attention to changes in the usual feces consistency is necessary.

Vaccination and judicious antibiotic use are crucial

Carefully consider vaccination programs for broilers. Unnecessary vaccinations impact the immune system, possibly resulting in reduced performance and, in some circumstances, make the birds more susceptible to other diseases. Hence, the vaccination program must be diligently attuned (Neetzon et al., 2017).Vaccination and judicious antibiotic use are crucial

  • The disease background of the parent farm as well as the broiler farm where the chicks will be placed are essential factors for the vaccination program
  • If possible, vaccine strains that are the least immunosuppressive should be chosen
  • If coccidiostats are not permitted, an effective vaccination against coccidiosis is required and must be done as early as possible
  • All vaccinations must be given using a standard operating procedure that minimizes bird discomfort and optimizes the vaccine, and always administer vaccines following the advice from the manufacturer

After the vaccination, it is essential to monitor the effects of vaccination stress and take preventive measures to avoid any issues with broiler performance in terms of weight gain and mortality.

Use antibiotics with discernment

As we aim to reduce antibiotics, they should be limited to pure therapeutic use, only if other disease-prevention measures have not been successful, and mortality or disease symptoms make the treatment necessary. Before the treatment, the disease must be diagnosed by a qualified veterinarian. The diagnosis should be preferably followed up by isolation of the disease-causing bacteria, classification, and susceptibility testing before the antibiotics are applied.

Small-spectrum antibiotics that are less likely to cause antimicrobial resistance (AMR) should be preferred. Broad-spectrum antibiotics or antibiotics that are likely to cause AMR can only be used after susceptibility testing has demonstrated resistance to a first-choice antibiotic. The treatment effect must be evaluated by daily monitoring of disease symptoms, mortality, water, feed intake, and body weight gain.

Thinning – things to consider

If thinning (partial depopulation) is practiced, it should be done with the highest bio-security measures. Producers must ensure that the equipment used in the catching process is thoroughly cleaned before entering the house, and bird-catching personnel takes the same measures as farm personnel when entering the farm and the house. These policies will help to minimize the introduction of infectious agents.

Keep the feed withdrawal period for this process as short as possible to avoid flightiness, which can induce skin lesions (some regions catch birds in low light intensities to avoid flightiness). A short feed withdrawal period also prevents over-consumption of feed in a short amount of time, possibly disrupting feed passage in the gut and leading to bacterial imbalance and dysbacteriosis in the remaining birds. After thinning, feed and temperature must be adapted to the lower number of animals.

Provide your birds with high-quality water for drinking

Provide your birds with high-quality water for drinkingWater is the most important nutrient for broilers. It plays an essential role in digestion and metabolism, thermoregulation, and waste elimination.

Several factors affect water quality: temperature, pH, bacteria, hardness, minerals, and total dissolved solids. These parameters should be analyzed at least twice per year. If necessary, corrective actions should be taken, e.g., a filtration to remove minerals, the addition of chlorine for disinfection, or the addition of organic acids to drop the pH.

Before each cycle, the water must be tested for total aerobic + enterobacteria, compared to reference values: Total plate count (TPC) should be < 1000 CFU/ml, and E.coli, Enterobacteriaceae, yeast, and molds at undetectable levels. The section about cleaning and disinfection of the waterline provides insights and practical advice about water sanitation and microbiological analysis.

Nutrition & feeding – a pillar for antibiotic reduction

Nutrition and feeding in ABR broiler production are not only about providing nutrients for growth but also about the effects of the feed on gut health. Gut health is essential for animals’ overall health, welfare, and productivity, even more so in antibiotic reduction scenarios.

Feed should be of the highest quality – in all respects

High feed quality is necessary to provide the animal with the required nutrients and achieve their optimal utilization. Also important is the absence, limitation, or management of harmful substances and pathogens. High quality, therefore, includes:

  • Form and composition of the final feed
  • Nutritional value of the raw materials
  • Management of harmful substances.

From reception and storage of the raw materials to the dispatch of the finished feed, the feed mill management emphasizes their quality assurance system, which is decisive in this connection.

First measure: quality assurance at the feed mill level

The feed mills producing for operations with no or reduced use of antibiotics must have a quality assurance (QA) and/or a good manufacturing program (GMP) in place that guarantees the production of consistently good quality feeds.

Proper raw material management and processing of feeds are necessary to achieve the lowest possible microbial-pathogen load, including:

  • An effective rodent and wild birds control
  • Disinfection of all the vehicles entering the feed mill
  • Proper storage and utilization of raw materials (e.g., first in-first out use, silo management)
  • Periodic thorough cleaning of milling equipment, premises and storage areas, and the monitoring of these activities
  • Standard operating procedure and quality assurance systems that guarantee feed safety and quality
Check the quality of the raw materials and the final feed

Digestion, absorption, and gut health depend on the quality of the feed ingredients. To provide the best preconditions for healthy growth, producers should avoid raw materials of a reduced and/or inconsistent quality. For this purpose, each raw material batch should be analyzed for its specific quality parameters. Quality parameters to consider are:

  • Physical ones, such as color, odor, particle size, and general appearance
  • Chemical ones, such as nutritional composition and specific parameters. For example, grains should be analyzed for mycotoxins and antinutritional factors; fats and oils need to be analyzed for free fatty acids (FFA), unsaturated/saturated (US) ratio, iodine value (IV), but also the peroxide value (PV) as oxidized fats have a lower energy value, and their intake is related to enteric diseases
  • Biological ones, including yeasts, molds, and enterobacteria

Also, the finished feed should be monitored by analyzing every batch concerning composition compared to values in the feed formulation, as well as physical, chemical, and microbiological quality parameters.

Clean storage on the farm prevents feed spoilage

As in the feed mill, keeping the farm facilities clean is of the highest importance. Warehouses, silos, bins, feeders, etc., should be emptied, cleaned, and disinfected after each flock; this avoids the formation of feed aggregates that can lead to mold growth and mycotoxin contamination; also, insects, bacteria, and parasites can remain in those residues.

Green field and factory

Adapt feed formulation and feeding to the feeding phase

The value of phase feeding

Having the correct number of dietary phases to meet animal demands and avoid excess nutrients provides better intestinal health and thus aids production animals in ABR scenarios. The feeding phases should be designed to prevent abrupt changes in nutrition and raw material inclusions, possibly leading to dysbacteriosis.

Feeding for gut health

When feeding broilers in antibiotic reduction scenarios, extra care should be taken when formulating diets. The challenge is to achieve the same performance as conventional management at an optimum cost.

  • Don’t waste nutrients: Improve feed digestibility, and at the same time, reduce the dangers of antinutritional factors coming from different ingredients by using suitable exogenous enzymes.
  • Keep an eye on fiber: Moderate levels of insoluble fibers with adequate structure and composition can be included to promote gizzard development and function. This measure leads to a better modulation of gut motility and feeds passage into the intestine. Additionally, it promotes gut health, resulting in higher nutrient digestibility.
  • Be careful with protein: Excess of undigested protein in the hindgut may lead to the proliferation of Clostridium perfringens; then, subclinical challenges of necrotic enteritis may occur. Moreover, the excess of nitrogen may increase feces moisture content, leading to wet litter. The optimization of the diets based on digestible amino-acid profiles and the use of synthetic amino acids decrease or eliminate the minimum requirements of crude protein, avoiding its excess.
Which feed form?

The feed form depends on the age or feeding phase: starter feeds can be offered as coarse mash, but preferably as crumble or mini-pellets (< 2 mm diameter) and grower and finisher diets as 3 – 4 mm pellets.

When using pelleted diets, quality is also the most crucial criterion. Poor pellet quality and thus the excess of fine particles increase feed passage rate, resulting in poor gizzard development and compromised gut health.

A high-quality pelleted feed can withstand – without much breakage – the handling that occurs after processing, such as transportation, storage, and farm management. Pellet quality can be measured by the Pellet Durability Index (PDI) obtained by simulating the impact and shear forces in a known quantity of feed for a determined amount of time. After this time, the sample is sieved, and the fines are separated, weighed, and compared with the initial sample

The PDI should be measured in the feed mill and compared to a standard. Later, it is also recommended to measure the PDI on the farm, and the producer should take corrective actions if the pellets cannot maintain their quality.

Additionally, it should be known that coarse ground grains stimulate gizzard development and function. So, about 30 % of the feed should consist of particles between 1-1.5mm (post pelleting) in all feeding phases.

Broilers’ selection criteria for feed are form, color, size,
and consistency

Broilers’ selection criteria for feed are form, color, size, and consistency

Broilers’ selection criteria for feed are form, color, size, and consistency. They prefer feed that is easy to pick, such as crumbles or pellets. 

Feed additives can support antibiotic reduction

The feed additive industry provides broiler farms and integrations with various solutions to make production more manageable and efficient.

A healthy start is half the battle

Let’s start with the chicks. The early introduction of beneficial bacteria into the intestinal tract has proven helpful for gut health optimization. This colonization can be achieved with the administration of suitable probiotics preparation at the hatchery. Multi-strain probiotic preparations effectively initiate healthy microbiome development for optimum gut health. For these challenges, support is offered through EW Nutrition’s VENTAR D and ACTIVO LIQUID, phytomolecule-based products for the feed and the waterline, respectively.

Maintain gut health

Gut health is one of the essential preconditions for efficient growth. Only a healthy gut guarantees efficient digestion and absorption of nutrients. Several approaches are recommended to maintain gut health:

  • Promotion of beneficial and reduction of pathogenic gut flora: here, solutions can come in the shape of products based on phy­tomolecules that can be applied with the feed (VENTAR D) or the water (ACTIVO LIQUID)
  • Management of bacterial toxins and mycotoxins: for this topic, products mitigating the toxins’ negative impact on the birds (Product range of MASTERSORB and SOLIS) are offered

Protect your feed

When feed is stored, there is always the risk of bacteria, mold, or yeast overgrowth. Oxidation of feed ingredients, such as fats and oils, reduces their nutritional value. These issues can be prevented by applying:

  • Acidifiers that have antimicrobial effects due to their pH-decreasing effect, which, later on, improves the feed digestibility and stabilizes the GIT flora (ACIDOMIX, FORMYCINE, and PRO-STABIL)
  • Antioxidants preserving ingredients susceptible to oxidation, such as fats and oils (AGRADO, SANTOQUIN, and STABILON)

Improve pellet quality

Moisture retention during the conditioning process influences pellet quality: higher moisture retention entails a higher starch gelatinization resulting in higher digestibility, pellet binding, fewer fines, and a higher PDI. Surfactants (for example, SURF•ACE) are compounds that can reduce the surface tension between the water and the feed, improving moisture absorption during the conditioning process.

Besides that, moist steam in the pelleting process penetrates better and has a higher antimicrobial effect leading to lower production of bacterial and mycotoxins. The possible reduction of the pelleting temperature protects the nutrients.

ABR in broiler production is practicable – by observing some rules

As shown above, antibiotic-reduced broiler production needs many aspects to be considered and a lot of measures to be taken. All of these measures seek to keep animals healthy and avoid antibiotic use. Maintaining gut health is crucial, as only a healthy gut performs well, achieves the optimal utilization of nutrients, and increases growth performance.

Maintaining a successful production unit with no or reduced antibiotic use requires a holistic approach in which best practices must be assured at all levels of the production chain. The feed additive industry provides a broad range of solutions to support animal production through this challenging task. The objective could not be more critical: lowering antibiotic resistance to assure the future of animal and human health.

 

References:

Davies, Robert, and Andrew Wales. “Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection.” Comprehensive Reviews in Food Science and Food Safety 18, no. 3 (2019): 753–74. doi.org/10.1111/1541-4337.12438

Dewulf, Jeroen, and Van Filip Immerseel. “General Principles of Biosecurity in Animal Production and Veterinary Medicine.” Essay. In Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice. Wallingford, Oxfordshire, UK: CABI, 2019. doi.org/10.1079/9781789245684.0063.

Luyckx, K.Y., S. Van Weyenberg, J. Dewulf, L. Herman, J. Zoons, E. Vervaet, M. Heyndrickx, and K. De Reu. “On-Farm Comparisons of Different Cleaning Protocols in Broiler Houses.” Poultry Science 94, no. 8 (2015): 1986–93. doi.org/10.3382/ps/pev143.

Kreis, Anna. “Broiler Feed Form, Particle Size Assists Performance.” Feed Strategy, September 20, 2019. https://www.feedstrategy.com/poultry-nutrition/broiler-feed-form-particle-size-assists-performance/.

Malone, B. “Litter Amendments: Their Role and Use.” University of Delaware – Agriculture & Natural Ressources – Fact Sheets and Publications. University of Delaware, November 2005. https://www.udel.edu/academics/colleges/canr/cooperative-extension/fact-sheets/litter-amendements/

Neetzon, A. M., Pearson, D., Dorko, N., Bailey, R., Shkarlat, P., Kretschmar-McCluskey, V., Van Lierde, E., Cerrate, S., Swalander, M., Vickery, R., Bruzual, J., Evans, B., Munsch, G., & Janssen, M. (2017, October). Aviagen Brief. Aviagen – Information Library. https://en.aviagen.com/assets/Tech_Center/Broiler_Breeder_Tech_Articles/English/AviagenBrief-ABF-Broiler-EN-17.pdf.

UC Davis Veterinary Medicine. “‘All out All in’ Poultry Management Approach to Disease Control. A Guide for Poultry Owners.” Poultry-UC ANR, March 2019. https://ucanr.edu/sites/poultry/files/301023.pdf

 




Necrotic Enteritis control for ABF poultry production

art81 header

By T.J. Gaydos

Control of Necrotic Enteritis (NE) can be one of the most difficult challenges in a system without the availability of antibiotics. In addition, NE is a costly disease because of mortality and loss of performance. Necrotic enteritis is a multifactorial disease that requires damage to the intestinal mucosa, disruption of the intestinal microflora, and a toxin-producing strain of Clostridium perfringens. If any one of these three items is removed or lessened, the severity or incidence of NE will be reduced.

The 3 must-haves for antibiotic-free necrotic enteritis control in poultry

1. Prevent mucosal damage

Prevent mucosal damage

The most common cause of damage to intestinal mucosa in broilers is excessive cycling of Eimeria maxima. The ubiquitous nature of this parasite in poultry production makes it one of the most important contributors to NE. This species of coccidia is most relevant with respect to NE because its life cycle invades deeper into tissues than other species leading to more damage to the intestinal mucosa.

The life cycle of coccidiosis lasts roughly seven days, with each cycle producing exponentially higher numbers of the parasite. Three consecutive replication cycles are needed to produce immunity. The biology of E. maxima is a significant reason why NE commonly occurs around 18-21 days. However, many other things may damage the intestinal mucosa, including mycotoxins, worms, and rancid fat. Managing all sources of mucosal disruption are critical to preventing and controlling NE.

2. Support the microflora

The importance of the microbiome on health is well known; the ability to modify the microbiome to a more appropriate or healthy status is a more difficult challenge. There is a tremendous volume of research in all species about the impact and importance of intestinal microflora on immunity, health, and disease. The microflora is not static but rather a dynamic community of microorganisms that change with bird age, time of day, composition of the diet, and treatment with antibiotics or other additives. Management of intestinal microflora is a very difficult process because its development and manipulation are not fully understood.

Any significant feed formulation or feed form change is a stress event for intestinal microflora. Feed changes are thus high-risk periods for the development of NE. It is a best practice to avoid feed changes when birds are in the NE risk window. It is important to support the intestinal microflora with either in-feed or in-water products to improve intestinal health during feed changes.

Chicken

It is important to avoid feed outages. After a feed outage, the disruption to the microflora and the increase in mucus production increases the likelihood of an NE outbreak in the following days. Preemptively adding a water additive to improve intestinal health directly after a feed outage can reduce the risk of NE in the flock.

When managing intestinal microflora: probiotics, prebiotics, plant extracts, enzymes, and organic acids are the most commonly used tools. Each of these product classes interacts with the bird and its flora in a different way and selecting additives with complimentary modes of action is critical to the success of the program. Direct colonizing organisms like Lactobacillus spp. can help to directly change the microflora, providing a more mature and healthier microbiome.

Prebiotics such as mannan- and fructo-oligosaccharides provide a food source for beneficial microorganisms and can interact directly with the immune system of the bird. Plant extracts can have antimicrobial or anti-inflammatory properties that can also modulate the microflora by impacting the growth and metabolism of different species of microorganisms in the intestine.

3. Limit Clostridium perfringens growth

It is not possible to eliminate toxin-producing C. perfringens from the environment. Clostridia are spore-forming microorganisms that are very resistant to disinfectants. However, it is possible to manage the abundance of these microorganisms in a system through proper litter management, sanitation, and disposal of mortality.

A house that has a history of NE should have the litter completely removed and the environment cleaned and disinfected as much as the facility will allow. New clean shavings should be brought into the house at a sufficient depth to limit access to the floor. Several non-antimicrobial feed and water additives have shown promise in reducing numbers of C. perfringens in feces of infected birds. Feed and water additives are an essential tool to reduce the impact of NE.

Limit Clostridium perfringens growth

Conclusion: the more you prevent, the less you have to treat

Even with the best management practices, outbreaks of NE will happen. In order to successfully treat a flock with NE, it is critical to catch the mortality early. Once a flock is experiencing high mortality from NE, it is very difficult to treat because the sickest birds will not be drinking enough water to receive a significant amount of water additives. Treating or managing an outbreak is as much art as science, but it is a combination of reducing the inciting causes.

Manage microflora and clostridial growth with organic acids, copper sulfate, phytogenics, or probiotics. Reduce coccidiosis cycling with amprolium, saponins, or other phytogenics. With excellent husbandry, the impact of NE can be reduced drastically even without using antibiotics. Managing NE incidence in poultry is a mixture of animal husbandry, managing coccidiosis cycling, feed and water additive selection, and high-quality nutrition.

 




Nutrition and feeding in ABF poultry production

art80 header e1633679843829

By T.J. Gaydos

Management practices and feed additive selection are often discussed when working in antibiotic-free (ABF) poultry production. Nutrition is another critical component of any agricultural animal system. Working with a qualified nutritionist will help ensure that the diet is correctly formulated with high-quality ingredients.

Chick Feed 

5 nutrition tips for antibiotic-free poultry production

1. Consider feed form and delivery

Feed form and delivery are nearly as important as the nutrient content of the formulation. If feed form or handling is improper and feed separates, is improperly mixed, or oxidized, the birds will not appreciate the effort that went to develop a balanced diet. A durable pellet or crumble is important to allow all birds to have equal access to a nutritionally complete diet with every bite.

Additionally, if the finished feed or individual ingredients are not stored properly, they may not have the same value that is attributed to them in the formulation process. Other than correct nutrient formulation, three parts of the diet that should be considered are feed additives, mycotoxin contamination, and lipid oxidation.

2. Prevent oxidative stress

The impact of oxidative stress on the intestinal mucosa, immune system, and performance is well-documented across species. Oxidized fat sources reduce the available energy, but equally significant to bird health is the reduction in vitamin availability, resulting in increased oxidative stress for the animal. Protecting the sources of fat and the finished feed is important to spare fat-soluble vitamins, specifically vitamin E.

Oxidized fat can also irritate the intestinal mucosa leading to decreased absorption of nutrients. The process of breaking down macromolecules during digestion and converting them to forms useful for further metabolism is a significant contributor to oxidative stress. The immune system is also a great contributor to oxidative stress. Immune cells use reactive oxygen species to kill pathogens that are phagocytosed.

A large portion of the immune system is located in the GI tract in order to protect the animal from pathogens crossing from the gut into the animal. In addition to being a contributor to oxidative stress, the immune system can be negatively impacted by oxidized feed (Liang et al., 2015). The combination of metabolic and immune activity in the intestines puts it at a high risk of damage from oxidative stress. It is vital to protect fat sources with synthetic or natural antioxidants; reducing the incoming stress from oxidized fat should be a priority to improve poultry health.

Chicken Feed

3. Mitigate mycotoxin risks

Another risk to bird health and mucosal integrity is mycotoxins. Diets containing mycotoxins may damage the mucosa of the GI tract directly or may damage other organs leading to significant health challenges and decreases in performance. Some mycotoxins or compounds created by fungi can disrupt the intestinal microflora by acting on bacterial cells, as many fungal metabolites are antimicrobial.

The best approach to managing mycotoxins is eliminating them from the system by purchasing high-quality grain and storing it appropriately. It is impossible to completely eliminate all risks of receiving ingredients contaminated with mycotoxins. An internal program should be developed to test the incoming ingredients and finished feed regularly for mycotoxins.

Knowing the challenging ingredient sources may help reduce the risk to highly susceptible birds like Breeders or chicks through dilution in formulation or the addition of toxin binders and/or enzymes. Several toxins may be found in a feed stuff and many of the mycotoxins are synergistic in their deleterious effects (Murugesan et al., 2015). Different binders have varying affinity for different mycotoxins; closely examining the product literature can help to choose the correct product to mitigate risk.

4. Choose optimal additives

Choosing the correct feed additive program for intestinal health, food safety, and growth performance depends on the specific challenges in the complex. When selecting a feed additive that is not FDA approved, it is important to base the decision as much as possible on scientific evidence through peer-reviewed research.

In addition to published data, internal testing within the production system is also helpful to ensure the product matches the local challenge. In a market saturated with “natural” products, it is essential to find a supplier that is trustworthy and is engaged in the success of the complex and health of the birds, not only in selling products. A partnership will be much more successful in the long term than only a buy/sell arrangement.

5. Manage expectations

When considering removing antibiotics from a program, the temptation is to expect natural products to completely replace the efficacy of antibiotics. This is an unreasonable expectation. The success of a transition to ABF production relies on modifying management practices as well. The vast majority of program success is related to attention to the details of husbandry, biosecurity, and sanitation. The remaining opportunity to improve health rests on the additive program.

References

Liang, Fangfang, Shouqun Jiang, Yi Mo, Guilian Zhou, and Lin Yang. “Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-Feathered Broilers.” Asian-Australasian Journal of Animal Sciences 28, no. 8 (2015): 1194–1201. https://doi.org/10.5713/ajas.14.0924.

Murugesan, G.R., D.R. Ledoux, K. Naehrer, F. Berthiller, T.J. Applegate, B. Grenier, T.D. Phillips, and G. Schatzmayr. “Prevalence and Effects of Mycotoxins on Poultry Health and Performance, and Recent Development in Mycotoxin Counteracting Strategies.” Poultry Science 94, no. 6 (2015): 1298–1315. https://doi.org/10.3382/ps/pev075.

 




Hatchery management in ABR production

art77 header scaled

By T.J. Gaydos

Producing high-quality chicks is critical to the success of any broiler program, but it is even more important in an antibiotic-free (ABF) program. The hatchery is the perfect environment for the incubation of eggs and, consequently, bacteria and mold. This makes hatchery sanitation a very high priority in ABF production systems because of the inability to use antibiotics in the hatchery or later in production.

Chick quality can be divided into two categories:

  • microbiologic
  • chick vitality

The reality is many of the processes that impact these two categories are often intertwined but can be generally separated into

  • sanitation practices
  • setting/hatching practices

It is not helpful to set specific objective benchmarks for an individual hatchery without understanding its specific challenges. The hatchery manager must realize that the end product is a healthy, robust chick; therefore, benchmarks and numerical goals for the individual hatchery, breed, and flock age need to be established.

There are a host of measurements that can be performed and data that can be collected; however, it only makes sense to collect only information that will be used to make decisions. It is easy to over-collect and under-utilize data.

Hatchery sanitation

Bacterial contamination

Hatchery sanitation starts at the breeder farm. Eggs are a significant source of contamination in the hatchery; consequently, floor eggs should not be brought to the hatchery. If they must be hatched for egg flow needs, it is essential to at least segregate them from the regular egg flow throughout the process. It is imperative to send a clean egg pack to the hatchery (transport and store the eggs at proper temperatures and humidity). Once the eggs are at the hatchery, the focus is on proper storage, incubation, and hatching. 

Monitoring sanitation

The risk of multiplying bacteria in the hatchery is high. Hatchery equipment can be difficult to clean, there are sufficient nutrients to support microbial growth, and the environment is perfect for incubation. Developing a program to monitor the cleanliness of the hatchery is a critical step in managing sanitation. The whole hatchery must be regularly cleaned and disinfected, and the most effort should be spent on chick contact surfaces.

Egg flats must be clean and dry before returning to the breeder farm. Hatcher baskets must be clean and dry before eggs are transferred. The tray wash machine should use a detergent and disinfectant to remove and sanitize the trays (the water temperature should be 140oF). A disinfectant with residual efficacy should be used after the tray wash. Too low of a temperature will encourage bacterial growth, and too high a temperature can damage the baskets.

When using an in ovo vaccination system, it is essential to clean and disinfect the machine after every use and prepare it for the next transfer. Chick belts, counters, chick baskets, hatchers, and setters are all areas that can harbor pathogens. Wet areas are also at risk for harboring disease: wet bulb thermometers, humidification equipment, and tray washers. All these areas should be regularly checked for cleanliness by traditional microbiology or rapid ATP testing.

It is important to monitor the hatchery air quality on a regular basis to ensure the level of bacteria and fungi is not too high. This is most effectively accomplished by placing air plates in key locations for air movement such as clean hatchers and setters and their respective halls, and plenums. The areas where vaccines are stored, mixed, and prepared should be surgical suite clean. 

Hatching practices

Chick vitality

A high-quality, active chick is one of the keys to program success. The actual profile used to hatch that bird is a mixture of breeder flock profile, hatchery equipment, climate, and experience. When evaluating a hatchery and a hatching program, it is best to start at the endpoint and work backward.

Managing chick comfort in the holding room is vital to set the chicks up for success on the farm. The chicks will tell you if they are too hot or too cold and if they have too much or too little airflow. This is determined by experience and monitoring behavior.

Tracking chick rectal temperatures is a useful way to check comfort. Remember that a small animal can change their body temperature from ideal to hyper- or hypothermic extremely quickly. On average, 103.5oF is a good benchmark for chick internal temperature. Moving backward through the process, evaluate the vaccine spray cabinet to ensure chicks are getting the proper vaccines at the proper rate.

The next critical opportunity to monitor chick vitality is when chicks are being separated from hatch debris. The volume of chicks passing through the site allows for rapid evaluation of the flock. In this area, it is important to check for open navels, strings, red hocks, green chicks, dirty chicks, and general appearance and behavior.

Hatch debris

The egg should be pipped and broken almost exactly in half. The debris should have minimal meconium, yolk stains, and should not smell bad. Excess meconium is an indication that the hatch window is prolonged, and the chicks spent too much time in the machine before pull.

When eggshells are crushed in one’s hand they should break, but the membrane should remain intact. If the membrane also breaks, it is a sign that the chicks were potentially overheated, incubated too long, or humidity was too low. 

Chick yield

One of the most useful measures of the setting process is chick yield, which is the weight of the chick at hatch compared to the weight of the egg set. Chicks with a low yield were set with a high temperature or low humidity or were hatched for a long time before being removed from the hatcher. Chicks with a high chick yield are a result of the opposite: low temperature and high humidity incubation or did not spend enough time in the hatcher post-hatch. The ideal chick yield depends on the breed of chicken and the individual hatchery, but 67-68 % yield is a good benchmark.

Breakout

Analyzing hatch debris is a crucial tool for understanding setting and hatching efficiencies. Embryo mortality is variable but tends to follow a consistent pattern. The majority of embryo mortality is early (1-7 days), with little mortality in the middle (8-14 days), and the second increase in embryo mortality occurring from 15-18 days. Results should be recorded, and a standard developed for the hatchery. Deviations from this standard should be investigated.

When aiming to improve the data collection process, focus on building a program that prioritizes the most useful information. Breakouts and chick yields are two of the most meaningful tests to modify the hatching process. Sanitation checks and monitoring of disinfectant levels at critical sanitation steps are valuable to improve hatchery quality. When all the pieces come together, high quality egg pack, sanitation, and excellent hatchery management, the result is a high-quality chick ready to succeed on the farm.




Broiler breeder management in ABF production: 3 essential steps

CHICKEN Kueken Gruppe Mix WEB

By T.J. Gaydos

Broiler breeders are the basis for the egg supply of an integrated company. All the management details of raising broiler breeders are important and require attention. Raising breeders and managing for persistency of lay, peak, fertility, and egg handling are important for all production systems. These details become more important when managing their progeny without the use of antibiotics.

Management in an ABF system requires extra attention – especially egg handling and sanitation. With the inability to use antibiotics in the progeny, it is critical to not bring additional pathogens into the hatchery on or in dirty eggs. A clean, well-managed egg pack will improve performance and animal welfare and significantly reduce seven-day mortality and the risk of foodborne illness.

1.      Cleanliness in the broiler breeder house and egg room

Managing egg cleanliness starts in the broiler breeder house before the first egg is laid. The house needs to be cleaned between flocks; at a minimum, water lines and nest pads should be cleaned and sanitized. The egg handling equipment and egg room should also be cleaned and disinfected. Special attention should be paid to egg contact surfaces and places where water accumulates, such as refrigeration and humidification equipment. If the previous flock had any disease issues, the houses should be thoroughly cleaned and disinfected. Between flocks, pest control is critical to reduce disease pressure: flies, rodents, and darkling beetles should be the focus as they are well-documented transmitters of disease. When adding shavings back to the house, it is important to not overfill the house to ensure there is a step between the scratch and the nest and thus help reduce the amount of litter and feces tracked into the nests.

 

2.      Training the birds

Once new breeders are moved to the house, it is important to train the birds on their location and not let hens learn to sleep in the nests. As hens begin to lay, training them not to lay floor eggs is an essential part of a clean egg pack.

Ensuring there are no dark spots, that any floor eggs are picked up quickly, and the scratch is walked on a regular basis are all important parts of the training to lay in nests. The temptation to set floor eggs is high, especially visibly clean eggs; the best way to eliminate this temptation is to reduce the amount of floor eggs. Visibly clean floor or slat eggs typically contain several logs more bacteria than clean nest eggs. Intestinal health is important to decrease the likelihood of soiled eggs.

High quality feed ingredients should always be used in breeder diets and the electrolyte balance carefully monitored to reduce the risk of flushing.

3.      Handling the eggs

The egg is well evolved to prevent contamination of the chick. There are multiple layers of protection: cuticle, shell, outer and inner shell membranes, and albumen. The cuticle and shell must be protected to reduce contamination. When removing minimal visible contamination, it is important to damage as little of the cuticle as possible.

3.1 Removing dirt

Dry contamination should be scraped off with a fingernail or soft plastic scraper. Wet contamination should be removed with a clean paper towel or disinfectant wipe. When removing wet contamination every effort should be made to prevent cross contamination of a larger area of the egg. Eggs should not be buffed clean since this may push dust and bacteria into the pores of the egg, limiting gas exchange and increasing contamination risk.

Any significantly soiled egg should be discarded. It is not advised to wash eggs or wet eggs for disinfection.

Gentle handling of eggs is important to reduce the risk of micro-cracks in the shell, further increasing the risk of bacterial contamination and dehydration.

3.2 Egg temperature and humidity

When packing eggs, fill the buggies from the bottom to the top. This decreases the risk of heating already cooled eggs, potentially reducing embryo viability. If egg packing equipment is used, it is important to clean the machine regularly. Special focus should be paid on the suction cups and rollers since they are in direct contact with the eggs and are very hard to clean.

As eggs cool, a slight vacuum is produced that may draw any liquid on the surface into the egg. Every effort should be made to ensure that eggs do not get wet. If they become wet, it is imperative to allow them to dry before putting them in the cooler. Egg trays and racks should be thoroughly cleaned and disinfected at the hatchery before returning them to the farm. Dirty or wet trays should not be used, they should either be thoroughly cleaned and disinfected on the farm or returned to the hatchery for cleaning.

Managing cooler temperatures is vital for hatchability. Additionally, it is important that eggs are continuously getting cooler to reduce the risk of sweating eggs. The hatchery egg cooler should be 15ºC or 59ºF, the farm egg cooler 2ºC warmer or 17ºC, and the egg transport truck in the middle (~16ºC). The humidity during storage should be 70-80% RH. Humidification devices are a high risk for microbial contamination; therefore, ensure that they are cleaned and disinfected frequently, and any mist is not directed towards the egg pack.

Conclusion

Appropriate management of the egg supply is key for any poultry company. The need for increased cleaning and disinfection is amplified in an ABF system. Clean and properly handled eggs are a fundamental step to producing high quality chicks.




How animal nutrition can contribute to sustainability

shutterstock 403205077 scaled

By Dr. Inge Heinzl, Editor, EW Nutrition

 

Nowadays, the whole world is talking about sustainability. Many efforts aim to maintain our world for future generations, creating a balance between our current needs and those of our children, grandchildren, and great-grandchildren. The right animal nutrition choices play a crucial role in achieving the challenging aim of sustainable animal production.

SWINE PIGS PIGLETS SUSTAINABLE AMR
Animal nutrition solutions can support producers’ sustainability contributions, from animal welfare to antibiotic reduction

Sustainability – an old concept now set out in writing

The idea of sustainability is not new. Already the first humans lived sustainably, taking only as much as they needed and the environment could cope with, using all parts of the animals they killed. The German Hannss Carl von Carlowitz (1645-1714) coined the term sustainability in his oeuvre “Sylvicultura oeconomica” to counter a threatening raw material crisis. Wood was one of the most important raw materials. Besides heating, it was used for shipbuilding and mining. This was the reason that extensive areas in Europe were deforested and became deserted. Observing the impending disaster, von Carlowitz ” (1713) stated that only as many trees should be felled as can grow back through planned reforestation, sowing, and planting.

The Brundtland Report (1987), a document created by the World Commission on Environment and Development, is reckoned to be the starting signal for worldwide discussions about sustainability. In 2015, the result of a meeting of 193 members of the United Nations was the Agenda 2030 with 17 sustainable development goals for a “world we want” that should be achieved by 2030.

Sustainable Development Goals (SDG) of the Agenda 2030, fixed by the UN in 2015

How can the feed sector contribute to sustainability?

The animal nutrition industry’s sustainability efforts play into different SDGs, notably no. 2, zero hunger, no. 3, good health and well-being, no. 12, responsible consumption and production, no. 13, climate action, no. 14, life below water, and no. 15, life on land. In addition to the overarching goal of fostering higher animal welfare (cf. Keeling et al., 2019), the feed sector’s measures center on three areas:

  1. Optimal use of feed resources, which includes optimizing feed conversion, preserving feed quality, and using alternative ingredients
  2. Preserving the environment by reducing ammonia and methane emissions and energy requirements
  3. Reducing antibiotics usage to maintain their efficacy for future generations

1.   Make best use of available resources

One of the 17 points on the list of the United Nations is “responsible consumption and production”.  For the feed industry, this means making the most out of available feed sources. Improvements in feed conversion, the maintenance of feed quality, and the use of alternative ingredients are all part of this.

Optimize FCR to utilize the available feed best

The feed conversion rate shows the amount of feed consumed in relation to the outputs produced, such as weight gain, eggs, or milk. The better or lower the feed conversion rate (FCR), the less feed you need to achieve your target, and the higher the yield. Products that improve feed conversion, therefore, can help to save resources.

Good feed conversion or an optimal utilization of nutrients depends on gut health. Only a healthy gut can digest the feed and absorb the nutrients adequately. Hence, products to improve feed conversion often do so by improving gut health.

Phytomolecules: proven to improve feed conversion

Herbs and their active components have been used in human and veterinary medicine for thousands of years to treat digestive tract diseases. Nowadays, products based on phy­tomolecules help improve feed conversion through their digestive, anti-inflammatory, and antimicrobial effects on the intestinal tract.

How do these three characteristics contribute to a better FCR?

  • Phy­tomolecules stimulate the secretion of digestive juices and the motility of the gut
  • Their antimicrobial effect supports a “healthy” balance in the microbiome, preventing damages of the gut wall by harmful microbes and, therefore, maintaining an optimal nutrient absorption
  • Their anti-inflammatory properties also contribute to good nutrient absorption and reduce endogenous nutrient loss

FCR improvements in broilers thanks to ACTIVO found in several studies

As phy­tomolecules are often volatile, EW Nutrition offers encapsulated phytomolecule-based products for the feed (ACTIVO product line). During episodes of elevated enteric challenge, e.g., weaning or following feed change, a liquid solution (ACTIVO LIQUID) can be applied via the waterline.

Enzymes help to make nutrients available

Some feed materials are hard to digest for certain animals. For example, pigs’ digestive systems do not have the enzymes required to break down non-starch polysaccharides (NSPs), such as cellulose, hemicellulose (ß-glucans and xylans), pectins or oligosaccharides. However, pig feed ingredients usually contain these substances.

Besides the non-usability of NSPs, the cage effect is a further problem. Cellulose and hemicellulose, water-insoluble NSPs, encage nutrients such as proteins or digestible carbohydrates. Encaged nutrients cannot be reached by the digestive enzymes and don’t become available to the animal.

Xylanases are available on the market to degrade structural substances in the feed and make them, as well as the nutrients they encaged, available for the organism.

Maintain the quality of your feed materials

Another possibility to save resources is the maintenance of feed quality. Bad weather conditions at harvest or incorrect storage can downgrade feed quality due to the development of molds and their mycotoxins or the oxidation of nutrients. Products mitigating the adverse effects of toxins, acidifiers that reduce microbial load, and antioxidants can help to keep your feed quality on a high level – or to re-establish it.

Mitigate the adverse effects of mycotoxins

Feed materials contaminated with mycotoxins harm animals in different manners and should not be used without further treatment. Mycotoxins are not visible – even if no molds are visible, mycotoxins might be present. Additionally, they are pH- and thermo-stable, meaning that mycotoxins produced in the raw materials on the field remain in the finished feed. As mycotoxins often do not cause apparent, specific symptoms but manifest in decreased performance, feed refusal or lower feed intake, and higher disease susceptibility, it is difficult to notice contamination.

Products such as SOLIS or MASTERSORB contain clay minerals (bentonite and montmorillonite) that adsorb the toxins. MASTERSORB GOLD and MASTERSORB FM also include toxin-adsorbing yeast cell walls and herbal substances to help protect the liver.

Feed spoilage through molds, yeasts, and mycotoxins wastes precious resources

Reduce microbes in the feed with acidifiers

Acidifiers based on organic acids counter harmful microbes in the feed in two ways. Most pathogenic bacteria are susceptible to low pH. The proliferation of, e.g., E. coli, Salmonella, and Clostridium perfringens is minimized at pH < 5 (cf. Fuller 1977). Acidic-tolerant beneficial bacteria such as Lactobacilli or Bifidobacterium, however, survive.

Other than antimicrobial activity, organic acids also cause a significant reduction in ammonia (Eriksen et al., 2014). This finding could be due to a reduction in the microbial deamination of amino acids, which would then be available for absorption, resulting in increased nitrogen digestibility and reduced ammonia excretion, as observed in monogastrics fed organic acids (Pearlin et al., 2020).

The acidifier product lines ACIDOMIX, FORMYCINE, and PRO-STABIL all help protect feed from contamination with pathogenic microorganisms.

Protect the feed’s nutrients from oxidation

The oxidation of nutrients in the feed decreases its nutritional value and, thereby, the value of the whole diet. Fat, proteins, fat-soluble vitamins, pigments, and other biologically active molecules, including sugars and phospholipids, can get oxidized. Metal ions and other pro-oxidative factors can affect the ingredients of the feed during mixing, storage, and feeding. The oxidation of fats and fat-soluble vitamins results in color changes or odors and – this is even more serious – in the production of harmful substances such as aldehydes and ketones. An oxidized feed can lead to oxidative stress in the animals, reduce their immunity, productivity, and livability.

To protect valuable ingredients, the timely addition of effective antioxidants such as STABILON is recommended.

Use alternatives to natural protein sources

Soybeans are an excellent source of protein in animal nutrition. During the last 50 years, soy production has increased from 27 million tons to 269 million tons, causing environmental degradation of forests and savannas (WWF, 2021). The use of alternative protein sources helps protect our environment.

Ruminants partly cover their protein requirements with the help of rumen bacteria. These bacteria can turn nitrogen from urea into bacterial protein, provided they receive enough energy available from carbohydrates. Thanks to its encapsulation, PROTE-N, a feed-grade urea-based nitrogen source, slowly releases nitrogen into the rumen, synchronized with the energy supply. PROTE-N affords producers a degree of independence from soybean protein without compromising nutritional quality.

Reducing soybeans in ruminant feeds helps to lower their environmental impact

2.   Preserve the environment

Animal production generates gases such as ammonia and methane that negatively impact the environment. Measures to reduce these gases help to protect plants, animals, us, and our globe.

Reduce ammonia by improving protein digestion

Besides nitrogen oxides, ammonia is one of the primary sources of nitrogen pollution. Ammonia damages ecological systems through acidification and nutritional oversupply. Fast-growing plants that need high amounts of nitrogen or plants that tolerate low soil pH proliferate, whereas more susceptible plants disappear, decreasing biodiversity. According to Max-Planck-Gesellschaft (2017), reducing ammonia emissions by 50 % could prevent 250.000 deaths caused by fine dust worldwide per year.

Improved protein digestion in animals reduces their ammonia production. Decreasing the intestinal pH through using organic acid-based products such as ACIDOMIX or FORMYCINE is essential for the activation and correct functioning of the enzymes responsible for protein digestion.

Reduce methane, the second most abundant greenhouse gas

Together with CO2, N2O, and three fluorinated gases, methane belongs to the greenhouse gases listed in the Kyoto protocol. Being over 25 times more potent than carbon dioxide at trapping heat in the atmosphere, it dramatically affects the earth’s temperature and the climate system (United States Environmental Protection Agency). Methane is a final product of feed fermentation in the rumen and is produced by methanogenic bacteria. Ruminants can produce 250-500 L methane per day (Johnson & Johnson, 1995).

Reducing methane production in ruminants is a critical step towards climate protection. Herbal substances can change the microbiome, leading to improved protein and fiber degradation and reduced methane production (Ku-Vera et al., 2020). ACTIVO PREMIUM is a phy­tomolecules-based product for ruminants that helps reduce their methane emissions.

Energy savings

To preserve the environment, reducing energy needs is also an important topic. Using the surfactant SURF-ACE in the pelletizing process, feed mills can cut 10-15 % of their energy consumption or produce up to 10-15 % higher pellet output without increasing their energy consumption. When moisture is added together with the surfactant, the emulsion of the dietary fat and the added water leads to better general lubrication of the machinery and improved press throughput.

FEED MILL POULTRY FEEDFeed mill efficiency is key to animal nutrition’s carbon footprint

3.   Reduce antibiotic use in animal production to keep this tool effective

Point 3 on the UN’s Agenda 2030 is good health and well-being. For many years, antibiotics, a very effective weapon, have been used to fight bacterial diseases. However, the occurrence of resistance is increasing. One of the reasons is the inappropriate use of antibiotics. These substances are often used preventively or for viral diseases against which they are ineffective. Also, the use of antibiotics as growth promoters at low dosages in animal production strongly contributed to the development of antimicrobial resistance.

Limiting antibiotic use to therapeutic treatment is possible through good farm management and feed supplements that support animals’ gut health, immune systems, and respiratory health. For this purpose, solutions ranging from phy­tomolecules (ACTIVO products, GRIPPOZON) to egg immunoglobulins (GLOBIGEN products, PROTEGG), products mitigating the impact of toxins (MASTERSORB products, SOLIS), beta-glucans/MOS (BGMOS), and acidifiers (ACIDOMIX, FORMYCINE) are available.

The feed sector has the tools to achieve more sustainability!

The animal nutrition industry provides many products to support animal producers in coping with their main challenges, including the shift to more sustainable production practices. Solutions exist to save feed resources, better protect the environment, and keep antibiotic tools effective. As an additional reward, implementing sustainability solutions leads to healthy animals with high performance. Let’s all help to preserve this planet for our next generations!

References

Eriksen, J., Nørgaard, J. V., Poulsen, H. D., Poulsen, H. V., Jensen, B. B., & Petersen, S. O. (2014). Effects of Acidifying Pig diets on emissions of AMMONIA, methane, and sulfur FROM Slurry during storage. Journal of Environmental Quality, 43(6), 2086–2095. https://doi.org/10.2134/jeq2014.03.0108

Fuller, R. (1977). The importance of lactobacilli in maintaining normal microbial balance in the crop. British Poultry Science, 18(1), 85–94. https://doi.org/10.1080/00071667708416332

Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483–2492. https://doi.org/10.2527/1995.7382483x

Keeling, Linda, Håkan Tunón, Gabriela Olmos Antillón, Charlotte Berg, Mike Jones, Leopoldo Stuardo, Janice Swanson, Anna Wallenbeck, Christoph Winckler, and Harry Blokhuis. “Animal Welfare and the United Nations Sustainable Development Goals.” Frontiers in Veterinary Science 6 (October 10, 2019). https://doi.org/10.3389/fvets.2019.00336.

Ku-Vera, J. C., Jiménez-Ocampo, R., Valencia-Salazar, S. S., Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., Gómez-Bravo, C. A., Aguilar-Pérez, C. F., & Solorio-Sánchez, F. J. (2020). Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.00584

Max-Planck-Gesellschaft. (2017, October 27). Reducing manure and fertilizers decreases atmospheric fine particles. Max-Planck-Gesellschaft. https://www.mpg.de/11667398/agricultural-emissions-fine-particulate-matter.

Pearlin, B. V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., Dhama, K., & Gopi, M. (2020). Role of acidifiers in livestock nutrition and health: A review. Journal of Animal Physiology and Animal Nutrition, 104(2), 558–569. https://doi.org/10.1111/jpn.13282

United Nations. (n.d.). How your company can advance each of THE SDGS: UN Global Compact. How Your Company Can Advance Each of the SDGs | UN Global Compact. https://www.unglobalcompact.org/sdgs/17-global-goals.

United States Environmental Protection Agency. (n.d.). Importance of methane. EPA. https://www.epa.gov/gmi/importance-methane.

von Carlowitz, H. C. (1713). Sylvicvltvra oeconomica, oder, Hausswirthliche Nachricht und Naturmässige Anweisung zur Wilden BAŬM-ZŬCHT: Nebst gründlicher darstellung, wie Zu FÖRDERST durch Göttliches Benedeyen Dem allenthalben und insgemein einreissenden Grossen Holtz-mangel: Vermittelst Säe-pflantz- und Versetzung Vielerhand Bäume zu prospiciren …: Worbey zugleich eine Gründliche nachricht von den in Churfl. Sächss. Landen gefundenen Turff Dessen Naturliche beschaffenheit, Grossen NÜTZEN, Gebrauch und nutzlichen verkohlung, Aus Liebe Zu BEFÖRDERUNG des Algemeinen Bestens beschrieben. Verlegts Johann Friedrich Braun.

World Wildlife Fund. (2021). Soja – die Nachfrage steigt. WWF Startseite. https://www.wwf.de/themen-projekte/landwirtschaft/produkte-aus-der-landwirtschaft/soja/.




ABF poultry production: How to keep coccidiosis in check

art74 header

By T.J. Gaydos

Coccidiosis control consists of programs, including ionophores, chemical coccidiostats, vaccines, and gut health-promoting natural products. Sometimes, these are combined (Noack, Chapman, and Selzer, 2019). Antibiotic-free (ABF) production requires new approaches – this article will look at how different solutions can be successfully implemented.

Meticulous coccidiosis management in ABF productions is crucial to safeguard animal welfare and performance.

What makes up a successful coccidiosis control program for ABF systems?

When managing a poultry program without antibiotics in the U.S., where ionophores are classified as antibiotics, the only available tools for coccidiosis control are vaccines, chemical coccidiostats, and natural products supporting gut health during challenging times.

  • The use of a chemical-only program is possible and often successful. Still, the choice of chemicals is limited, and the risk of building resistance must always be considered and managed through the appropriate rotation of active ingredients.
  • A second option is a coccidiosis vaccine with or without chemical coccidiostats. This is an excellent long-term option but the most difficult to manage.
  • A third effective option is a coccidiosis vaccine combined with the use of phytomolecule-based solutions contributing to the coccidiosis control program and delivering improved gut health.

What do most ABF newcomers do?

When making the transition from conventional to ABF production, broiler producers usually try:

  1. A chemical coccidiostat program,
  2. A bio-shuttle program: a coccidiosis vaccine, followed by a chemical coccidiostat, or
  3. Phytomolecule-based feed additives; typically, in combination with a coccidiosis vaccine or chemical program.

When the operation can master managing the coccidiosis vaccine and other husbandry challenges, the optimal solution is the combination of vaccination and phytomolecule-based feed supplements.

Why a combination?

A coccidiosis control program based on vaccination begins in the hatchery and continues through live production. Its success relies on many moving parts working in sync to produce the desired result of early uniform immunity to coccidiosis. Phytomolecule-based products additionally can support the animals in terms of gut health, oxidative balance, and immunity.

Vaccination success depends on attention to detail

If one decides to use vaccination for coccidiosis control, the following points must be considered to achieve high effectiveness.

Vaccine storage – the right temperature is crucial

Proper storage is essential for all vaccines. In general, coccidiosis vaccines should be stored between 2° to 7°C (35° to 45°F), but optimally, one asks the vaccine manufacturer for product-specific directions. Coccidiosis vaccines must not freeze. Freezing will severely damage or kill the oocysts, thus significantly reducing efficacy. It is also important to ensure that there are no cold spots in the refrigerator. Hence, vaccines should be stored in the middle of a shelf with air space around or in a foam-insulated place inside the fridge.

For monitoring the temperature, an analog high/low thermometer should be placed by the vaccine. The temperature should be recorded, and the thermometer reset daily. To minimize the risk of administering a frozen vaccine, it is recommended to put freeze indicators outside the boxes. If, despite all these measures, vaccines are suspected to have frozen, segregate the suspect product and contact the supplier for assistance.

Vaccine administration – mind an even distribution for all steps

The goal of vaccination is to build early and uniform immunity in all chickens, which is achieved by exposure to repeated cycles of coccidia replication in the intestine.

1.      Even distribution of the oocysts in the vaccine

It is essential to ensure that all oocysts flow from the bottle into the distribution jug when mixing the vaccine. The oocysts should be well-mixed and then must be constantly agitated to remain suspended in solution. The most common way to suspend oocysts is to use a small air pump to bubble the vaccine, creating turbulence.

2.      Even spraying of the vaccine onto the chicks

The next important step is to ensure that the chicks are evenly covered with the vaccine. When in doubt, run a chick box through the spray cabinet, collect the nozzles’ output, and measure the volume sprayed. To check the spray pattern, set a piece of clear hard plastic on top of the pegs in the chick basket and run the box through the spray cabinet. Evaluate the spray pattern on the plastic sheet and adjust as needed to ensure an even spraying. The spray pattern should be checked every time a new batch of vaccines is mixed.

Even spraying of coccidiosis vaccine can be easily tested using a clear plastic sheet.

3.      A similar amount of vaccine intake for all chicks

Coccidiosis vaccines must be preened and consumed to be effective. Adding a dye to the spray compatible with the vaccine will help stimulate the birds to preen. A well-lit and temperature-controlled processing and holding area will promote preening behavior. Tongues should be checked regularly to ensure that chicks consume the vaccine. At a minimum, check ten birds per basket and ten baskets per lot. More than 98% of birds should have evidence of vaccine consumption within 10-15 minutes post-vaccination.

Chick vitality is a critical success factor in an ABF program. Healthy chicks perform better in the field. In the context of a coccidiosis vaccine, they are more apt to preen, more likely to consume food and water quickly, and less likely to excessively pick at the litter.

A dye helps to evaluate if the coccidiosis vaccine was evenly sprayed across all chicks.

Uniform immunity through effective farm management

A successful coccidiosis vaccination program achieves uniform immunity against coccidia, which slowly develops from the hatchery. For this purpose, birds must be evenly spread throughout all stages of growth to seed the litter evenly with oocysts and to have even coccidiosis pressure in all parts of the house.

Time management allows even immunization

Birds should be turned out from half to full house between 9 and 11 days. This schedule allows the birds to excrete the first round of oocysts and for the oocysts to sporulate and be consumed by the birds.

The birds need to be moved to full house before they secrete the second round of oocysts. This will allow the oocysts to be spread uniformly in the house. Coccidia reproduce exponentially and the second round of oocyst production is significantly more numerous than the first.

It is possible to brood birds in the full house while on coccidiosis vaccine. Still, it is complicated to manage the coccidiosis cycling because bird density is generally too low to ensure that birds effectively cycle the vaccine strain oocysts.

Litter consistency is decisive

Litter management is essential to control the cycling of coccidiosis because one stage of the life cycle of coccidia occurs in the litter. Litter moisture of 25% is ideal. When litter is squeezed in a fist, it should briefly form and immediately break apart. If it stays formed, it is too wet. If the litter is free-flowing and dusty, it is too dry for adequate sporulation.

Non-antibiotic supplements support coccidiosis management

Managing coccidiosis cycling requires attention to detail and is probably the most challenging part of adequately managing an ABF program. All farms are not equal and need to be supervised according to their specific needs. The use of non-antibiotic feed and water additives can help control coccidiosis and other enteric diseases.

Some non-antibiotic supplements have anticoccidial (e.g. amprolium, saponins, tannins) or antibacterial (e.g., plant extracts) activity. When used correctly, these may improve the performance of birds in a vaccination or chemical-based coccidiosis control program. Other non-antibiotic alternatives such as probiotics, prebiotics, organic acids, and yeast cell wall extracts have been shown to improve gastrointestinal health. The combination of excellent animal husbandry and the correct feed/water additive program is the key to success.

References

Noack, Sandra, H. David Chapman, and Paul M. Selzer. “Anticoccidial Drugs of the Livestock Industry.” Parasitology Research 118, no. 7 (2019): 2009–26. https://doi.org/10.1007/s00436-019-06343-5.




Want to reduce antibiotic use? Biosecurity and sanitation are crucial

art73 header

By T.J. Gaydos

Biosecurity may not sound like an exciting topic at first, but it is a critical component of responsible poultry production. It is not enough to devise a strong biosecurity program; that program must also be followed by all people that interact within the system. It only takes one dirty boot or tire to ruin months of hard work.

Achieving good results with a flock largely depends on protecting the birds from biosecurity risks

Antibiotic reduction in poultry requires biosecurity

In a poultry operation, feed, people, and equipment constantly need to go in and out of farms and mills. Thus, no biosecurity program can be perfect. The intensity of the program needs to balance the realities of farming and the current disease pressure. The best program takes all of those into account, additionally considers local weather, availability of supplies, and company/farm staff. It is simple enough to be done even when no one is watching and should be easily scalable in case of increased disease pressure.

The rigorousness of a program must be in due proportion to the local circumstances. Having a biosecurity program that is too strict for the perceived disease pressure may result in people taking the path of least resistance. They probably will not follow instructions, especially if there is not enough monitoring and training to reinforce the value of biosecurity. On the other hand, a program with too lax guidelines will not have the desired effect.

The discrepancy between care requirements and separation

Unfortunately, the most valuable animals in an operation are often the most frequently visited by the most people. Pullets need closely monitored feedings, vaccines, and deworming. Breeders need eggs collected and shipped. Hatcheries require a labor force and maintenance. The feed mill and hatchery are central and overlapping points for all areas of the operation. The human and vehicle traffic at these locations must be closely monitored to reduce the risk of rapid disease transmission.

Feed mills are critical sites for biosecurity measures in poultry production

A physical barrier or sign indicating a biosecurity area on a farm or building entrance can help remind people of the program. Of course, these signs will not stop a disease from entering, nor a person determined to enter a site, but they will cause well-trained people to pause and reflect if they are making a sound decision.

Hygiene is a critical factor

It is well documented that hands and feet are significant transmitters of human and animal pathogens. Several studies have shown that hand washing can reduce absenteeism in school-aged children by 29-57%, thanks to a decrease in gastrointestinal diseases (Wang et al., 2017). Hand washing also reduces the incidence of respiratory illness in human populations by up to 21% (Aiello et al., 2008). Mycoplasmas can survive for one day in a person’s nose, for up to three days in hair, and up to 3-5 days on cotton or feathers (Christensen et al., 1994). Influenza viruses endure 1-2 days on hard surfaces (Bean et al., 1982) and more than a month in pond water (Domanska-Blicharz et al., 2010).

When building a biosecurity program, it is essential to consider the relevant pathogens of concern and the practical ways to reduce their risk of transmission.

How to establish an effective biosecurity program

Generally, biosecurity comprises two important parts:

  • Physical biosecurity, being the combination of all the physical barriers such as boot washes, signs, and disinfection
  • Operational biosecurity, covering the processes that protect an operation. This includes downtime, visiting birds in age order, time out for birds from people visiting sick flocks, and respect for physical biosecurity measures. Operational biosecurity starts with training, not only regarding the tasks required to be secure, but also the importance of disease prevention.

Establish several zones

When designing a program, consider four zones of increasing cleanliness: off-farm, on-farm, transition zone, and the animal housing area (Figure 1). Each zone should have a control point to reduce the pathogen load coming in, with exact measures depending on current disease status and bird value. These measures include vehicle sanitation and movement restrictions, footwear cleaning and disinfection, and use of personal protective equipment (PPE).

Figure 1: the four “cleanliness zones” in a farm

Increasing cleanliness from off-farm (red) to on-farm (orange) separated by a physical barrier. The entrance to the facility (transition zone; yellow) and the animal housing area (green).

Cleaning and disinfection are two of the core measures

As hands and feet are the main transmitters of pathogens, washing and sanitizing them is a priority. The outside of the house must be left outside, meaning that hands should be washed frequently and shoes sanitized between sites. Shoe covers should be put on when entering the house.

Cleanliness of the cell phone is often overlooked as a source of disease transmission (Olsen et al., 2020). It is a powerful tool: camera, notebook, light… and notoriously hard to clean. Cleaning and disinfection also apply to all shared tools and equipment that enter farms.

Prevent undesired “cohabitants”

Another critical point in biosecurity is the control of undesired pests and farm animals. Baits must be rotated, available where rodents are frequent, appropriately spaced, and secured from non-target animals. Habitats for pests need to be removed, the perimeter of the buildings must be clear of vegetation and debris, feed and grain spills picked up, and equipment stored away from the facilities. Pets and other farm animals should be kept away from the perimeter of the house and should under no circumstance be allowed to enter the facilities.

Tailored biosecurity programs keep your flock healthy

It is impossible to design a blanket biosecurity program for every operation. Understanding microbiology and disease transmission along with the risk points in a production system will allow a comprehensive plan to be developed. It is important to consider biosecurity as an investment in health and not an optional expense. No program is perfect, but small changes can significantly reduce the risk of pathogens entering the system and leading to major economic and animal welfare issues.

References

Aiello, Allison E., Rebecca M. Coulborn, Vanessa Perez, and Elaine L. Larson. “Effect of Hand Hygiene on Infectious Disease Risk in the Community Setting: A Meta-Analysis.” American Journal of Public Health 98, no. 8 (2008): 1372–81. https://doi.org/10.2105/ajph.2007.124610

Bean, B., B. M. Moore, B. Sterner, L. R. Peterson, D. N. Gerding, and H. H. Balfour. “Survival of Influenza Viruses on Environmental Surfaces.” Journal of Infectious Diseases 146, no. 1 (1982): 47–51. https://doi.org/10.1093/infdis/146.1.47.

Christensen, N. H., Christine A. Yavari, A. J. McBain, and Janet M. Bradbury. “Investigations into the Survival of MYCOPLASMA GALLISEPTICUM, Mycoplasma Synoviae And Mycoplasma Iowae on Materials Found in the Poultry House Environment.” Avian Pathology 23, no. 1 (1994): 127–43. https://doi.org/10.1080/03079459408418980.

Domanska-Blicharz, Katarzyna, Zenon Minta, Krzysztof Smietanka, Sylvie Marché, and Thierry van den Berg. “H5n1 High Pathogenicity Avian Influenza Virus Survival in Different Types of Water.” Avian Diseases 54, no. s1 (2010): 734–37. https://doi.org/10.1637/8786-040109-resnote.1.

Olsen, Matthew, Mariana Campos, Anna Lohning, Peter Jones, John Legget, Alexandra Bannach-Brown, Simon McKirdy, Rashed Alghafri, and Lotti Tajouri. “Mobile Phones Represent a Pathway for Microbial Transmission: A Scoping Review.” Travel Medicine and Infectious Disease 35 (2020): 101704. https://doi.org/10.1016/j.tmaid.2020.101704.

Wang, Zhangqi, Maria Lapinski, Elizabeth Quilliam, Lee-Ann Jaykus, and Angela Fraser. “The Effect of Hand-Hygiene Interventions on Infectious Disease-Associated Absenteeism in Elementary Schools: A Systematic Literature Review.” American Journal of Infection Control, 2017. https://doi.org/10.1016/j.ajic.2017.01.018.




Antibiotics: Keep this effective weapon sharp

abr gaydos header 1 e1631184817785

By Technical Team, EW Nutrition

Antibiotics are a precious resource whose long-term efficacy must be protected – for human and animal health. This is a difficult challenge for healthcare providers (veterinarians and medical doctors), as well as farmers and integrators. In this series of articles, we will explore the general and specific measures and solutions through which animal production can contribute to the overall reduction of antibiotic use.

Responsible animal production contributes to maintaining antibiotic efficacy

Shortly after the discovery of penicillin in 1929, Alexander Fleming already pointed out the possibility of resistance during an interview with the New York Times. The first case of penicillin resistance was reported only one year after clinical trials began; within 20 years, 80% of Staphylococcus aureus isolates were resistant to penicillin (Lobanovska and Pilla, 2017).

Over the years, clients and patients have gotten used to receiving a pill to quickly fix their ailments. Often, antibiotics have been prescribed for illnesses they were not effective against, including viral challenges. This has unnecessarily accelerated the rate of resistance development. To reverse this trend, education is key. At the same time, the judicious use of antibiotics, meaning the correct antibiotic for the challenge plus proper administration and duration of use, is paramount for all medical professionals to help preserve the efficacy of these critical substances.

Antibiotic use in animal production must be reduced

For many years, animal producers have used antibiotics as growth promoters. The E.U. banned this type of use in 2006, and the United States followed in 2017. Evaluations have shown a decrease in antibiotic use in the U.S.: In 2014, according to the FDA, 17,000 tons of antibiotics were sold in the United States for livestock, representing 80 percent of all U.S. antibiotics sales. In 2019, a total of about 11,000 tons of antibiotics were sold for use in food-producing animals (FDA, 2020).

As the number of isolated multi-drug resistant bacteria increases and the discovery and approval of new antibiotics slows, it is imperative that the use of antibiotics in animal production, especially those that are critically important for humans, is reduced to a minimum. Hence, antibiotics should only be used to treat, control, or prevent diseases in case of imminent risk, but not for growth-promoting purposes.

Scanning electron micrograph of methicillin-resistant Staphylococcus aureus bacteria (yellow) and a dead human white blood cell (red). Credit: National Institute of Allergy and Infectious Diseases/NIH

Customers’ requests for antibiotic-free chicken push antibiotic reduction

Many birds are already raised without antibiotics in the US and elsewhere because of the demands of the market. Since 2016, chicken antibiotic sales decreased by 62% (Dall, 2020). Frequently, the goal of these antibiotic-free (ABF) production programs is to differentiate products in a highly competitive commodity market. The reduction of antibiotic use has been a secondary, generally unintended consequence.

Nevertheless, to meet customer demands for ABF products, antibiotics that are not important to human health but for production (e.g., ionophores) have also been eliminated. In many cases, this has negatively affected growth performance and bird health. As the requirements for production efficiency and welfare standards increase, transitioning from “conventional” to ABF production poses a challenge for everyone involved.

Antibiotic reduction through improved management

One must never trade animal welfare for reduced antibiotics use, but the need for them can be decreased through improved management practices. Flock health starts with genetics companies selecting birds that are resilient to disease and management challenges and continues all the way to the processing plant. All of the inputs and practices must be optimized in modern poultry production to maintain a high level of performance and animal welfare while reducing reliance on antibiotics.

Antibiotic-free requires diligent management

When antibiotics are not available, attention to detail becomes more decisive. All aspects of production are important, but the most critical stages are those that affect the downstream process. The pullets, breeders, and hatchery require the most meticulous care. Additionally, all production factors must meet the highest quality standards: feed, light, air quality, water quality, litter quality, biosecurity, vaccination, sanitation, nutrition and feeding.

Antibiotic reduction requires meticulous attention to detail to safeguard animal welfare.

Non-antibiotic feed additives support ABF programs

ABF production is all about sustainability. For agricultural operations to survive and thrive in the future, one has to move away from the old paradigm of “saving the way to success”. This is not impossible in ABF production, but misses out on the larger picture of long-term profitability, investment in innovation, and system change.

Non-antibiotic feed and water additives are essential resources to support sustainable management. To mention a few, probiotics, prebiotics, toxin binders, organic acids, and phy­tomolecules are all options for reducing the need for antibiotics based on different modes of action. Phytomolecules, for example, often have antimicrobial properties, some toxin binders can bind bacterial toxins, and pre- and probiotics support the gut flora. There are many kinds of solutions on the market; the key is to find the right ones for your issues.

Antibiotic stewardship: together for a healthier future

There is already a large body of literature demonstrating the benefits of alternative or complementary solutions. More importantly, there are already many people that successfully raise birds and other animals without antibiotics. Whenever possible, leverage your professional network and talk to trusted people with unique experiences. Working together, we can build a healthier future for people and animals.

 

The Antibiotic Reduction series

The series that debuts here consists of a set of articles offering professionals a practical overview of poultry production with reduced antibiotic use. The independent expert in charge, starting with the next article in the series, is Dr. TJ Gaydos, who holds a Master’s degree in Avian Medicine and is a diplomate of the American College of Poultry Veterinarians.

Dr. Gaydos works with integrated poultry companies and allied industries, focusing on bird health and antibiotic-free production performance. He has spent his veterinary career working to improve intestinal health, animal welfare, production efficiency, and reduce zoonotic diseases. He works extensively with intestinal health, probiotics and prebiotics, and other non-antimicrobial feed additives.

Topics covered under Dr. Gaydos’s guidance include biosecurity, nutrition, pullet management, hatchery sanitation, gut health, and more. Together they provide an extensive look at the producers’ pain points and potential strategies to maintain bird health while mitigating the need for antibiotics.

References

AccessScience Editors, “U.S. Bans Antibiotics Use for Enhancing Growth in Livestock.” Access Science. McGraw-Hill Education, January 1, 1970. https://www.accessscience.com/content/u-s-bans-antibiotics-use-for-enhancing-growth-in-livestock/BR0125171.

Dall, Chris. “FDA Reports Another Rise in Antibiotic Sales for Livestock.” FDA Reports Another Rise in Antibiotic Sales for Livestock | International Biosecurity and Prevention Forum, December 16, 2020. https://www.ibpforum.org/news/fda-reports-another-rise-antibiotic-sales-livestock.

Lobanovska, Mariya, and Giulia Pilla . “Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future?” Yale Journal of Biology and Medicine. 90, no. 1 (March 29, 2017): 135–45.

U.S. Food and Drug Administration. “2020 Summary Report On Antimicrobials Sold or Distributed for Use in Food-Producing Animals” Food and Drug Administration, 2019. https://www.fda.gov/media/144427/download.




How to achieve sustainable antibiotic-free broiler production

art64 new header photo scaled

by Predrag Persak, Regional Technical Manager North Europe, EW Nutrition

The main sustainability challenge for broiler production lies in securing enough high-quality, nutritious, safe, and readily available food at a reasonable cost. At times, feed ingredients have to be included that are not nutritionally ideal and might compromise one’s broilers’ health and wellbeing. However, counteracting this threat with prophylactic antibiotics is not acceptable: We must minimize the use of antibiotics to mitigate antimicrobial resistance. The way forward is to go beyond static and linear nutritional value-to-price thinking. A dynamic nutritional strategy focusing on the interdependencies between ingredients, gut, microbiome, and digestion, enables sustainable ABF broiler production.

Sustainable ABF broiler production requires a dynamic, gut health-oriented nutritional strategy

Sustainability vs. ABF production – is there a trade-off?

The United Nations’ 1987 Brundtland report offers a clear definition of sustainability as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” “Ability” includes the availability of resources – and in broiler production, which is one of the most efficient livestock productions, resources have always been a top priority. As a constantly evolving industry, broiler production has been quick to adopt sustainability into its management strategies. The use of the resource that is antibiotics, however, poses particular challenges.

Humans and animals depend on antibiotics to fight microbial infections. It is essential to maintain their efficacy so that future generations can lead healthy lives. Antibiotic efficacy is under threat from the development of antimicrobial resistance, which emerges from overuse and misuse in both human and veterinary medicine. Across the globe, broilers are still raised with the assistance of antibiotics. Either for disease therapy, to prevent disease occurrence, and still, in some parts of the world, to enhance performance. Driven by regulatory and consumer demands, broiler production with minimal or no use of antibiotics is rapidly gaining importance.

The challenges of antibiotic-free broiler production

ABF systems encounter numerous challenges since production requirements change drastically. Stock density must be lower; it takes longer to reach the desired weight; and more feed is needed to produce the same amount, with a higher risk of morbidity and mortality (Cervantes, 2015). The latter can result in more birds needing treatment with medically important antimicrobial drugs. All those challenges need to be overcome by adopting suitable strategies related to nutrition, genetics, management, biosecurity, welfare, and food safety.

As animal nutritionists, our focus lies on nutrition, feed, feed materials, additives, feed processing, feeding, and their (positive or negative) influence on the sustainability of ABF broiler production. However, we cannot look at these dimensions of production as a separate process. They are linked in the whole food chain and are affected by changes that happen in other related parts. An obvious example is feed production, which has an enormous impact on the overall sustainability of ABF broiler production:

  • Due to raw material shortages, diets are becoming ever more complex, containing more single feed ingredients. For some of them, we need a better understanding of their impact on ABF broiler production (e.g., sunflower, rapeseed, beans, lupins).
  • The nutritional composition of raw materials changes due to limitations in fertilizer use, and variability within the same raw material group is expected to increase.
  • New food waste-reducing feed materials can enhance feed security but also require nutritional profiling to integrate them into diets.
  • Local feed material production in humid and warm environments can introduce various pathogens into the feed/food chain.
  • Increases in known and the emergence of new antinutrients and feed components that impair animal health, performance, and feed efficiency.
  • Sustainability-driven pesticide reduction raises concerns about mycotoxins contaminating feed ingredients.
  • Nutrient reduction to support gut health and, primarily, lower the excretion of nitrogen and phosphorous, negatively affects growth, nutritional standards, and the ability to freely select feed materials to include in broiler diets.
  • The value (of which price is also part) of raw materials will be compromised, due to availability and nutritional variability.

Mycotoxin contaminated-feed can damage production animals' performance, health, and welfareMycotoxin contaminated-feed can damage production animals’ performance, health, and welfare

When striving for a sustainable ABF broiler production approach, the possibility for errors becomes higher, while the error margin becomes smaller. The solution lies in helping the animals to mitigate the impact of stressors by focusing on the interaction of ingredients, gut, microbiome, and digestion. It is a holistic approach centered on gut health. Keeping the intestines BEAUTIful will help you produce in challenging conditions without the use of antimicrobials.

Keep the broiler gut BEAUTIful and resilient to stress

The BEAUTIful formula captures the six areas producers need to target for supporting broiler gut health:BEAUTI stands for barrier, enzymatic digestion, absorption, united microbiome, transport, and immunity

Barrier

If it’s working correctly, the effective gatekeeper knows what gets in and what stays out. When the barrier function is compromised due to stress, pathogens can cause infections, disrupt health, and negatively impact broiler immunity. Necrotic enteritis, femoral head necrosis, and bacterial chondronecrosis with osteomyelitis (BCO) are common diseases that affect today’s broiler production (Wideman, 2015). As the source of nutrients, feed serves as a modulator of various physiological functions in the intestinal tract, including intestinal barrier function.

Enzymatic digestion

The gut is where endogenous and exogenous enzymes perform their hydrolysis functions to break down complex nutrients into the parts that can be used either by the intestinal tissue itself or for the whole animal. One part of hybrid enzymatic digestion is the fermentation by commensal microbes, in which complex materials form end-products of high biological values (such as short-chain fatty acids, SCFA).

Absorption

Maintaining the gut’s resorptive capacity is essential to secure the total intake of digested nutrients. Otherwise, pathogenic bacteria might use the excess nutrients to grow, form toxins, and affect the birds’ health and productivity.

United microbiome

The intestine of a broiler chicken is colonized by more than 800 species of bacteria and other inhabitants, such as viruses and simple organisms that are still unknown. By competitive exclusion and secretion of bacteriocins (volatile fatty acids, organic acids, and natural antimicrobial compounds), commensal bacteria keep the host safe from an overgrowth of dangerous bacteria (e.g., Salmonella, Campylobacter, and Clostridium perfringens). The fine-tuned diversity in the intestinal flora and balance in all interactions between it, the host, and the ingesta are needed for birds to stay healthy and perform well.

Transport

Birds’ digestive tract volumes are smaller than those of mammals with similar body weight. This means that they achieve more efficient nutrient digestion in a shorter retention time, averaging between 5 and 6 hours. Passing the small intestine usually takes around 3 hours, of which 1 hour is spent in the duodenum and jejunum. Transport times are affected by the feeding system and the extent to which material enters the caeca. Reflux of material from the distal to the proximal small intestine is an important feature that helps digestion and maintenance of a healthy gut.

Immunity

The intestinal microbiota is critically important for the development and stimulation of the immune system. The intestine is the key immunological organ, comprised of myeloid and lymphoid cells, and a site for producing many immune cell types needed to initiate and mediate immunity. Together with the microbiome, dendritic cells induce antigen-specific responses and form immunoglobulin A, which works in the intestinal lumen.

Natural gut health solution for sustainable ABF broiler production

In practice, supporting broiler gut health requires a holistic approach that includes natural feed additive solutions. Phytomolecules are compounds that certain plants develop as defenses mechanisms. Phytomolecules-based solutions should feature prominently in sustainable ABF broiler production approaches due to their advantageous properties:

Enhance digestion, manage variability

Sustainability necessitates efficient resource utilization. Digestion support needs to be a priority to use the available feed in its entirety. This is particularly important if antibiotics use needs to be minimized: a maximum of nutrients should be utilized by the animal; otherwise, they feed potentially harmful bacteria, necessitating antibiotic treatments. Enhancing digestibility is the focus when we are dealing with variable feed materials or feed changes that represent stress to the animal. Selected phytomolecules have proven efficient at improving performance due to enhanced digestion (Zhai et al. 2018).

Work on microbiome and pathogens

The antimicrobial activity of certain phytomolecules can prevent the overgrowth of pathogens in the gastrointestinal tract, thereby reducing dysbacteriosis (Liu et al., 2018) and specific diseases such as necrotic enteritis. Studies on broilers show that they also reduce the adhesion of pathogens to the wall of the intestine. Certain phytomolecules even possess antimicrobial characteristics against antibiotic-resistant pathogens.

Keep gut integrity

Phytomolecules help maintain tight junction integrity, thus preventing leaky gut (Li et al., 2009). As a result, the potential flow of bacteria and their toxins from the gut lumen into the bloodstream is mitigated. Their properties thus make phytomolecules a promising alternative to the non-therapeutic use of antibiotics. 

Trial results: Phytomolecules enhance broiler gut health

To test the efficacy of phytomolecules, we conducted a large-scale field study in Brazil, under practical conditions. The focus was on growth performance, and no growth-promoting antibiotics were used. Lasting 5 months, the trial involved more than 2 million broilers. The birds were divided into a control and a trial group, with two repetitions per group. Both groups were fed the standard feed of the farm. The trial group additionally received 100g of Activo per MT in its finisher feed for 3 weeks. The study clearly shows that Activo supplementation improves performance parameters (daily weight gain, average total gain, and improved feed efficiency), which resulted in a higher production efficiency factor (PEF):

  • Activo groups had a 3 % higher average daily weight gain and reached their slaughtering age earlier
  • The final weight of Activo groups was about 2.5 % higher than in the control group
  • With a 2 points better feed conversion, the animals of the Activo group achieved a 13.67 points higher PEF

Figure 1: Broiler performance results, Activo vs. non-supplemented control group Figure 1: Broiler performance results, Activo vs. non-supplemented control group 

Conclusion

Antibiotic-free broiler production is a challenging endeavor: producers need to maintain animal welfare and keep up efficiency while making farming profitable. Over time, these challenges will affect producers even more as sustainability requirements increase across all parts of the broiler production chain. On top of that, coccidiostats, which are essential for efficient broiler production, are increasingly being questioned, which will require concerted research into feed additive solutions.

To make sustainable ABF broiler production the norm, it is unavoidable to adopt suitable strategies related to nutrition, genetics, management, biosecurity, welfare, and food safety. Effective, scientifically and practically proven tools already exist: Thanks to their positive impact on intestinal health, phytomolecules reliably support sustainable broiler production without antibiotics.


References

Cervantes, Hector M. “Antibiotic-Free Poultry Production: Is It Sustainable?” Journal of Applied Poultry Research 24, no. 1 (2015): 91–97. https://doi.org/10.3382/japr/pfv006.

Li, Y., H.Y. Cai, G.H. Liu, X.L. Dong, W.H. Chang, S. Zhang, A.J. Zheng, and G.L. Chen. “Effects of Stress Simulated by Dexamethasone on Jejunal Glucose Transport in Broilers.” Poultry Science 88, no. 2 (2009): 330–37. https://doi.org/10.3382/ps.2008-00257.

Liu, ShuDong, MinHo Song, Won Yun, JiHwan Lee, ChangHee Lee, WooGi Kwak, NamSoo Han, HyeunBum Kim, and JinHo Cho. “Effects of Oral Administration of Different Dosages of Carvacrol Essential Oils on Intestinal Barrier Function in Broilers.” Journal of Animal Physiology and Animal Nutrition 102, no. 5 (2018): 1257–65. https://doi.org/10.1111/jpn.12944.

Wideman, Robert F. “Bacterial Chondronecrosis with Osteomyelitis and Lameness in Broilers: a Review.” Poultry Science 95, no. 2 (2016): 325–44. https://doi.org/10.3382/ps/pev320.

Zhai, Hengxiao, Hong Liu, Shikui Wang, Jinlong Wu, and Anna-Maria Kluenter. “Potential of Essential Oils for Poultry and Pigs.” Animal Nutrition 4, no. 2 (2018): 179–86. https://doi.org/10.1016/j.aninu.2018.01.005.