How to achieve sustainable antibiotic-free broiler production

art64 new header photo scaled

by Predrag Persak, Regional Technical Manager North Europe, EW Nutrition

The main sustainability challenge for broiler production lies in securing enough high-quality, nutritious, safe, and readily available food at a reasonable cost. At times, feed ingredients have to be included that are not nutritionally ideal and might compromise one’s broilers’ health and wellbeing. However, counteracting this threat with prophylactic antibiotics is not acceptable: We must minimize the use of antibiotics to mitigate antimicrobial resistance. The way forward is to go beyond static and linear nutritional value-to-price thinking. A dynamic nutritional strategy focusing on the interdependencies between ingredients, gut, microbiome, and digestion, enables sustainable ABF broiler production.

Sustainable ABF broiler production requires a dynamic, gut health-oriented nutritional strategy

Sustainability vs. ABF production – is there a trade-off?

The United Nations’ 1987 Brundtland report offers a clear definition of sustainability as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” “Ability” includes the availability of resources – and in broiler production, which is one of the most efficient livestock productions, resources have always been a top priority. As a constantly evolving industry, broiler production has been quick to adopt sustainability into its management strategies. The use of the resource that is antibiotics, however, poses particular challenges.

Humans and animals depend on antibiotics to fight microbial infections. It is essential to maintain their efficacy so that future generations can lead healthy lives. Antibiotic efficacy is under threat from the development of antimicrobial resistance, which emerges from overuse and misuse in both human and veterinary medicine. Across the globe, broilers are still raised with the assistance of antibiotics. Either for disease therapy, to prevent disease occurrence, and still, in some parts of the world, to enhance performance. Driven by regulatory and consumer demands, broiler production with minimal or no use of antibiotics is rapidly gaining importance.

The challenges of antibiotic-free broiler production

ABF systems encounter numerous challenges since production requirements change drastically. Stock density must be lower; it takes longer to reach the desired weight; and more feed is needed to produce the same amount, with a higher risk of morbidity and mortality (Cervantes, 2015). The latter can result in more birds needing treatment with medically important antimicrobial drugs. All those challenges need to be overcome by adopting suitable strategies related to nutrition, genetics, management, biosecurity, welfare, and food safety.

As animal nutritionists, our focus lies on nutrition, feed, feed materials, additives, feed processing, feeding, and their (positive or negative) influence on the sustainability of ABF broiler production. However, we cannot look at these dimensions of production as a separate process. They are linked in the whole food chain and are affected by changes that happen in other related parts. An obvious example is feed production, which has an enormous impact on the overall sustainability of ABF broiler production:

  • Due to raw material shortages, diets are becoming ever more complex, containing more single feed ingredients. For some of them, we need a better understanding of their impact on ABF broiler production (e.g., sunflower, rapeseed, beans, lupins).
  • The nutritional composition of raw materials changes due to limitations in fertilizer use, and variability within the same raw material group is expected to increase.
  • New food waste-reducing feed materials can enhance feed security but also require nutritional profiling to integrate them into diets.
  • Local feed material production in humid and warm environments can introduce various pathogens into the feed/food chain.
  • Increases in known and the emergence of new antinutrients and feed components that impair animal health, performance, and feed efficiency.
  • Sustainability-driven pesticide reduction raises concerns about mycotoxins contaminating feed ingredients.
  • Nutrient reduction to support gut health and, primarily, lower the excretion of nitrogen and phosphorous, negatively affects growth, nutritional standards, and the ability to freely select feed materials to include in broiler diets.
  • The value (of which price is also part) of raw materials will be compromised, due to availability and nutritional variability.

Mycotoxin contaminated-feed can damage production animals' performance, health, and welfareMycotoxin contaminated-feed can damage production animals’ performance, health, and welfare

When striving for a sustainable ABF broiler production approach, the possibility for errors becomes higher, while the error margin becomes smaller. The solution lies in helping the animals to mitigate the impact of stressors by focusing on the interaction of ingredients, gut, microbiome, and digestion. It is a holistic approach centered on gut health. Keeping the intestines BEAUTIful will help you produce in challenging conditions without the use of antimicrobials.

Keep the broiler gut BEAUTIful and resilient to stress

The BEAUTIful formula captures the six areas producers need to target for supporting broiler gut health:BEAUTI stands for barrier, enzymatic digestion, absorption, united microbiome, transport, and immunity

Barrier

If it’s working correctly, the effective gatekeeper knows what gets in and what stays out. When the barrier function is compromised due to stress, pathogens can cause infections, disrupt health, and negatively impact broiler immunity. Necrotic enteritis, femoral head necrosis, and bacterial chondronecrosis with osteomyelitis (BCO) are common diseases that affect today’s broiler production (Wideman, 2015). As the source of nutrients, feed serves as a modulator of various physiological functions in the intestinal tract, including intestinal barrier function.

Enzymatic digestion

The gut is where endogenous and exogenous enzymes perform their hydrolysis functions to break down complex nutrients into the parts that can be used either by the intestinal tissue itself or for the whole animal. One part of hybrid enzymatic digestion is the fermentation by commensal microbes, in which complex materials form end-products of high biological values (such as short-chain fatty acids, SCFA).

Absorption

Maintaining the gut’s resorptive capacity is essential to secure the total intake of digested nutrients. Otherwise, pathogenic bacteria might use the excess nutrients to grow, form toxins, and affect the birds’ health and productivity.

United microbiome

The intestine of a broiler chicken is colonized by more than 800 species of bacteria and other inhabitants, such as viruses and simple organisms that are still unknown. By competitive exclusion and secretion of bacteriocins (volatile fatty acids, organic acids, and natural antimicrobial compounds), commensal bacteria keep the host safe from an overgrowth of dangerous bacteria (e.g., Salmonella, Campylobacter, and Clostridium perfringens). The fine-tuned diversity in the intestinal flora and balance in all interactions between it, the host, and the ingesta are needed for birds to stay healthy and perform well.

Transport

Birds’ digestive tract volumes are smaller than those of mammals with similar body weight. This means that they achieve more efficient nutrient digestion in a shorter retention time, averaging between 5 and 6 hours. Passing the small intestine usually takes around 3 hours, of which 1 hour is spent in the duodenum and jejunum. Transport times are affected by the feeding system and the extent to which material enters the caeca. Reflux of material from the distal to the proximal small intestine is an important feature that helps digestion and maintenance of a healthy gut.

Immunity

The intestinal microbiota is critically important for the development and stimulation of the immune system. The intestine is the key immunological organ, comprised of myeloid and lymphoid cells, and a site for producing many immune cell types needed to initiate and mediate immunity. Together with the microbiome, dendritic cells induce antigen-specific responses and form immunoglobulin A, which works in the intestinal lumen.

Natural gut health solution for sustainable ABF broiler production

In practice, supporting broiler gut health requires a holistic approach that includes natural feed additive solutions. Phytomolecules are compounds that certain plants develop as defenses mechanisms. Phytomolecules-based solutions should feature prominently in sustainable ABF broiler production approaches due to their advantageous properties:

Enhance digestion, manage variability

Sustainability necessitates efficient resource utilization. Digestion support needs to be a priority to use the available feed in its entirety. This is particularly important if antibiotics use needs to be minimized: a maximum of nutrients should be utilized by the animal; otherwise, they feed potentially harmful bacteria, necessitating antibiotic treatments. Enhancing digestibility is the focus when we are dealing with variable feed materials or feed changes that represent stress to the animal. Selected phytomolecules have proven efficient at improving performance due to enhanced digestion (Zhai et al. 2018).

Work on microbiome and pathogens

The antimicrobial activity of certain phytomolecules can prevent the overgrowth of pathogens in the gastrointestinal tract, thereby reducing dysbacteriosis (Liu et al., 2018) and specific diseases such as necrotic enteritis. Studies on broilers show that they also reduce the adhesion of pathogens to the wall of the intestine. Certain phytomolecules even possess antimicrobial characteristics against antibiotic-resistant pathogens.

Keep gut integrity

Phytomolecules help maintain tight junction integrity, thus preventing leaky gut (Li et al., 2009). As a result, the potential flow of bacteria and their toxins from the gut lumen into the bloodstream is mitigated. Their properties thus make phytomolecules a promising alternative to the non-therapeutic use of antibiotics. 

Trial results: Phytomolecules enhance broiler gut health

To test the efficacy of phytomolecules, we conducted a large-scale field study in Brazil, under practical conditions. The focus was on growth performance, and no growth-promoting antibiotics were used. Lasting 5 months, the trial involved more than 2 million broilers. The birds were divided into a control and a trial group, with two repetitions per group. Both groups were fed the standard feed of the farm. The trial group additionally received 100g of Activo per MT in its finisher feed for 3 weeks. The study clearly shows that Activo supplementation improves performance parameters (daily weight gain, average total gain, and improved feed efficiency), which resulted in a higher production efficiency factor (PEF):

  • Activo groups had a 3 % higher average daily weight gain and reached their slaughtering age earlier
  • The final weight of Activo groups was about 2.5 % higher than in the control group
  • With a 2 points better feed conversion, the animals of the Activo group achieved a 13.67 points higher PEF

Figure 1: Broiler performance results, Activo vs. non-supplemented control group Figure 1: Broiler performance results, Activo vs. non-supplemented control group 

Conclusion

Antibiotic-free broiler production is a challenging endeavor: producers need to maintain animal welfare and keep up efficiency while making farming profitable. Over time, these challenges will affect producers even more as sustainability requirements increase across all parts of the broiler production chain. On top of that, coccidiostats, which are essential for efficient broiler production, are increasingly being questioned, which will require concerted research into feed additive solutions.

To make sustainable ABF broiler production the norm, it is unavoidable to adopt suitable strategies related to nutrition, genetics, management, biosecurity, welfare, and food safety. Effective, scientifically and practically proven tools already exist: Thanks to their positive impact on intestinal health, phytomolecules reliably support sustainable broiler production without antibiotics.


References

Cervantes, Hector M. “Antibiotic-Free Poultry Production: Is It Sustainable?” Journal of Applied Poultry Research 24, no. 1 (2015): 91–97. https://doi.org/10.3382/japr/pfv006.

Li, Y., H.Y. Cai, G.H. Liu, X.L. Dong, W.H. Chang, S. Zhang, A.J. Zheng, and G.L. Chen. “Effects of Stress Simulated by Dexamethasone on Jejunal Glucose Transport in Broilers.” Poultry Science 88, no. 2 (2009): 330–37. https://doi.org/10.3382/ps.2008-00257.

Liu, ShuDong, MinHo Song, Won Yun, JiHwan Lee, ChangHee Lee, WooGi Kwak, NamSoo Han, HyeunBum Kim, and JinHo Cho. “Effects of Oral Administration of Different Dosages of Carvacrol Essential Oils on Intestinal Barrier Function in Broilers.” Journal of Animal Physiology and Animal Nutrition 102, no. 5 (2018): 1257–65. https://doi.org/10.1111/jpn.12944.

Wideman, Robert F. “Bacterial Chondronecrosis with Osteomyelitis and Lameness in Broilers: a Review.” Poultry Science 95, no. 2 (2016): 325–44. https://doi.org/10.3382/ps/pev320.

Zhai, Hengxiao, Hong Liu, Shikui Wang, Jinlong Wu, and Anna-Maria Kluenter. “Potential of Essential Oils for Poultry and Pigs.” Animal Nutrition 4, no. 2 (2018): 179–86. https://doi.org/10.1016/j.aninu.2018.01.005.




Piglet Nutrition Scenarios for AGP Removal

piglets farm scaled

 

Over the past 60 years, antibiotics have played an essential role in the swine industry as a tool that swine producers rely on to control diseases and to reduce mortality. Besides, antibiotics are also known to improve performance, even when used in subtherapeutic doses. The perceived overuse of antibiotics in pig production, especially as growth promoters (AGP), have raised concerns from governments and public opinion, regarding the emergence of multidrug-resistant bacteria, adding a threat not only to animal but also human health. The challenges raised regarding AGPs and the need for their reduction in livestock led to the development of combined strategies such as the “One Health Approach”, where animal health, human health, and the environment are interlaced and must be considered in any animal production system.

In this scenario of intense changes, swine producers must evaluate strategies to adapt their production systems to accomplish the global pressure to reduce antibiotics and still have a profitable operation.

Many of these concerns focus on piglet nutrition, since the use of sub-therapeutic levels of antimicrobials as growth promotors is still a regular practice for preventing post-weaning diarrhea in many countries (Heo et al., 2013; Waititu et al., 2015). Taking that into consideration, this article serves as a practical guide to swine producers through AGP removal and its impacts on piglet performance and nutrition Three crucial points will be addressed:

  1. Why is AGP removal a global trend?
  2. What are the major consequences for piglet nutrition and performance?
  3. What alternatives do we have to guarantee optimum piglet performance in this scenario?

 

AGP removal: a global issue

Discussions on the future of the swine industry include understanding how and why AGP removal became such important topic worldwide. Historically, European countries have led discussions on eliminating AGP from livestock production. In Sweden, AGPs were banned from their farms as early as 1986. This move culminated into a total ban of AGPs in the European Union in 2006. Other countries followed same steps. In Korea, AGPs were removed from livestock operations in 2011. The USA is also putting efforts into limiting AGPs and the use of antibiotics in pig farms, as published in guidance revised by the Food and Drug Administration (FDA, 2019). In 2016, Brazil and China banned Colistin, and the Brazilian government also announced the removal of Tylosin, Tiamulin, and Lincomycin in 2020. Moreover, countries like India, Vietnam, Bangladesh, Buthan, and Indonesia have announced strategies for AGP restrictions (Cardinal et al., 2019; Davies and Walsh, 2018).

The major argument against AGPs and antibiotics in general is the already mentioned risk of the development of antimicrobial resistance, limiting the available tools to control and prevent diseases in human health. This point is substantiated by the fact that resistant pathogens are not static and exclusive to livestock, but can also spread to human beings (Barbosa and Bünzen, 2021). Moreover, concerns have been raised in regard to the fact that antibiotics in pig production are also used by humans – mainly third-generation antibiotics. The pressure on pig producers increased and it is today multifactorial: from official regulatory departments and stakeholders at different levels, who need to consider public concerns about antimicrobial resistance and its impact on livestock, human health, and the sustainability of farm operations (Stein, 2002).

It is evident that the process of reducing or banning antibiotics and AGPs in pig production is already a global issue and increasing as it takes on new dimensions. As Cardinal et al. (2019) suggest, that process is irreversible. Companies that want to access the global pork market and comply with increasingly stricter regulations on AGPs must re-invent their practices. This, however, is nothing new for the pig industry. For example, pig producers from the US and Brazil have adapted their operations in order to not use ractopamine to meet the requirements from the European and Asian markets. We can be sure, therefore, that the global pig industry will find a way to replace antibiotics.

With that in mind, the next step is to evaluate the consequences of AGP withdrawal from pig diets and how that affects the animals’ overall performance.

Consequences in piglet health and performance

Swine producers know very well that weaning pigs is challenging. Piglets are exposed to many biological stressors during that transitioning period, including introducing the piglets to new feed composition (going from milk to plant-based diets), abrupt separation from the sow, transportation and handling, exposure to new social interactions, and environmental adaptations, to name a few. Such stressors and physiological challenges can negatively impact health, growth performance, and feed intake due to immune systems dysfunctions (Campbell et al. 2013). Antibiotics have been a very powerful tool to mitigate this performance drop. The question then is, how difficult can this process become when AGPs are removed entirely?

Many farmers around the world still depend on AGPs to make the weaning period less stressful for piglets. One main benefit is that antibiotics will reduce the incidence of PWD, with subsequent improved growth performance (Long et al., 2018). The weaning process can create ideal conditions for the overgrowth of pathogens, as the piglets’ immune system is not completely developed and therefore not able to fight back. Those pathogens present in the gastrointestinal tract can lead to post-weaning diarrhea (PWD), among many other clinical diseases (Han et al., 2021). PWD is caused by Escherichia coli and is a global issue in the swine industry, as it compromises feed intake and growth performance throughout the pig’s life, also being a common cause for losses due to young pig death (Zimmerman, 2019).

Cardinal et al. (2021) also highlight that the hypothesis of a reduced intestinal inflammatory response is one explanation for the positive relationship between the use of AGPs and piglet weight gain.  Pluske et al. (2018) point out that overstimulation of the immune system can negatively affect pig growth rate and feed use efficiency. The process is physiologically expensive in terms of energy and also can cause excessive prostaglandin E2 (PGE2) production, leading to fever, anorexia, and reduction in pig performance. For instance, Mazutti et al. (2016) showed an increased weight gain of up to 1.74 kg per pig in animals that received colistin or tylosin in sub-therapeutic levels throughout the nursery. Helm et al. (2019) found that pigs medicated with chlortetracycline in sub-therapeutic levels increased average daily gain in 0.110 kg/day. Both attribute the higher weight to the decreased costs of immune activation determined by the action of AGPs on intestinal microflora.

On the other hand, although AGPs are an alternative for controlling bacterial diseases, they have also proved to be potentially deleterious to the beneficial microbiota and have long-lasting effects caused by microbial dysbiosis – abundance of potential pathogens, such as Escherichia and Clostridium; and a reduction of beneficial bacteria, such as Bacteroides, Bifidobacterium, and Lactobacillus (Guevarra et al., 2019; Correa-Fiz, 2019). Furthermore, AGPs reduced microbiota diversity, which was accompanied by general health worsening in the piglets (Correa-Fiz, 2019).

It is also important to highlight that the abrupt stress caused by suckling to weaning transition has consequences in diverse aspects of the function and structure of the intestine, which includes crypt hyperplasia, villous atrophy, intestinal inflammation, and lower activities of epithelial brush border enzyme (Jiang et al., 2019). Also, the movement of bacteria from the gut to the body can occur when the intestinal barrier function is deteriorated, which results in severe diarrhea and growth retardation. Therefore, nutrition and management strategies during that period are critical, and key gut nutrients must be used to support gut function and growth performance.

With all of that, it is more than never necessary to better understand the intestinal composition of young pigs and finding strategies to promote gut health are critical measures for preventing the overgrowth and colonization of opportunistic pathogens, and therefore being able to replace AGPs (Castillo et al., 2007).

Viable alternatives for protecting the piglets

The good news is that the swine industry already has effective alternatives that can replace AGP products and guarantee good animal performance.

Immunoglobulins from egg yolk (IgY) have proven to be a successful alternative to weaned piglet nutrition. Investigations have shown that egg antibodies improve the piglets’ gut microbiota, making it more stable (Han et al., 2021). Moreover, IgY optimizes piglet immunity and performance while reducing occurrences of diarrhea caused by E. coli, rotavirus, and Salmonella sp. (Li et al., 2016).

Phytomolecules (PM) are also potential alternatives for AGP removal, as they are bioactive compounds with antibacterial, antioxidant, and anti-inflammatory characteristics (Damjanović-Vratnica et al., 2011; Lee and Shibamoto, 2001). When used for piglet diet supplementation, phytomolecules optimize intestinal health and improve growth performance (Zhai et al., 2018).

Han et al. (2021) evaluated a combination of IgY (Globigen® Jump Start, EW Nutrition) and phytomolecules (Activo®, EW Nutrition) supplementation in weaned piglets’ diets. Results from that study (Table 1 and 2) showed that this strategy decreases the incidence of PWD and coliforms, increases feed intake, and improves the intestinal morphology of weaned pigs, making that combination a viable AGP replacement.

Table 1. Effect of dietary treatments on the growth performance of weaned pigs challenged with E. coli K88 (SOURCE: Han et al., 2021).

Table 2. Effect of dietary treatments on the post-weaning diarrhea incidence of weaned pigs challenged with E. coli K88 (%) (SOURCE: Han et al., 2021).

 

A trial conducted at the Institute of Animal Sciences of the Chinese Academy of Agricultural Sciences, China, supplemented weaning pigs challenged by E. coli K88 with a combination of PM (Activo®, EW Nutrition) and IgY (Globigen® Jump Start). The trial reported that this combination (AC/GJS) showed fewer diarrhea occurrences than in animals from the positive group (PC) during the first week after the challenge and similar diarrhea incidence to the AGP group during the 7th and 17th days after challenge (Figure 1).

Figure 1 – Incidence of diarrhea (%). NC: negative group, PC: positive group, AGP: supplementation with AGP, AC/GJS: combination of PM (Activo, EW Nutrition) and IgY (Globigen Jump Start).

 

The same trial also showed that the combination of these non-antibiotic additives was as efficient as the AGPs in improving pig performance under bacterial enteric challenges, showing positive effects on body weight, average daily gain (Figure 2), and feed conversion rate (Figure 3).

Figure 2 – Body weight (kg) and average daily gain (g). NC: negative group, PC: positive group, AGP: supplementation with AGP, AC/GJS: combination of PM (Activo, EW Nutrition) and IgY (Globigen Jump Start).

Figure 3 – Feed conversion rate. NC: negative group, PC: positive group, AGP: supplementation with AGP, AC/GJS: combination of PM (Activo, EW Nutrition) and IgY (Globigen Jump Start).

The multiple benefits of using IgY in piglet nutrition strategies are also highlighted by Rosa et al. (2015), Figure 4, and Prudius (2021).

Figure 4. Effect of treatments on the performance of newly weaned piglets. Means (±SEM) followed by letters a,b,c in the same group of columns differ (p < 0.05). NC (not challenged with ETEC, and diet with 40 ppm of colistin, 2300 ppm of zinc, and 150 ppm of copper). Treatments challenged with ETEC: GLOBIGEN® (0.2% of GLOBIGEN®); DPP (4% of dry porcine plasma); and PC (basal diet) (SOURCE: Rosa et al., 2015).

 

Conclusions

AGP removal and overall antibiotic reduction seems to be the only direction that the global swine industry must take for the future. From the front line, swine producers demand cost-effective AGP-free products that don’t compromise growth performance and animal health. Along with this demand, finding the best strategies for piglet nutrition in this scenario is critical in minimizing the adverse effects of weaning stress. With that in mind, alternatives such as egg immunoglobulins and phytomolecules are commercial options that are already showing great results and benefits, helping swine producers to go a step further into the future of swine nutrition.

 

References

Damjanović-Vratnica, Biljana, Tatjana Đakov, Danijela Šuković and Jovanka Damjanović, “Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro,” Czech Journal of Food Sciences 29, no. 3 (2011): 277-284.

Pozzebon da Rosa, Daniele, Maite de Moraes Vieira, Alexandre Mello Kessler, Tiane Martin de Moura, Ana Paula Guedes Frazzon, Concepta Margaret McManus, Fábio Ritter Marx, Raquel Melchior and Andrea Machado Leal Ribeiro, “Efficacy of hyperimmunized hen egg yolks in the control of diarrhea in newly weaned piglets,” Food and Agricultural Immunology 26, no. 5 (2015): 622-634. https://doi.org/10.1080/09540105.2014.998639

Freitas Barbosa, Fellipe, Silvano Bünzen. Produção de suínos em épocas de restrição aos antimicrobianos–uma visão global. In: Suinocultura e Avicultura: do básico a zootecnia de precisão (2021): 14-33. https://dx.doi.org/10.37885/210203382

Correa-Fiz, Florencia, José Maurício Gonçalves dos Santos, Francesc Illas and Virginia Aragon, “Antimicrobial removal on piglets promotes health and higher bacterial diversity in the nasal microbiota,” Scientific reports 9, no. 1 (2019): 1-9. https://doi.org/10.1038/s41598-019-43022-y

Food and Drug Administration [FDA]. 2019. Animal drugs and animal food additives. Avaliable at: https://www.fda.gov/animalveterinary/development-approval-process/veterinary-feeddirective-vfd

Stein, Hans H , “Experience of feeding pigs without antibiotics: a European perspective,” Animal Biotechnology 13 no. 1(2002): 85-95. https://doi.org/10.1081/abio-120005772

Helm, Emma T, Shelby Curry, Julian M Trachsel, Martine Schroyen, Nicholas K Gabler, “Evaluating nursery pig responses to in-feed sub-therapeutic antibiotics”, PLoS One 14 no. 4 (2019). https://doi.org/10.1371/journal.pone.0216070.

Hengxiao Zhai, Hong Liu, Shikui Wang, Jinlong Wu and Anna-Maria Kluenter, “Potential of essential oils for poultry and pigs,” Animal Nutrition 4, no. 2 (2018): 179-186. https://doi.org/10.1016/j.aninu.2018.01.005

Pluske, J. R., Kim, J. C., Black, J. L. “Manipulating the immune system for pigs to optimise performance,” Animal Production Science 58, no 4, (2018): 666-680. https://doi.org/10.1071/an17598

Zimmerman, Jeffrey, Locke Karriker, Alejandro Ramirez, Kent Schwartz, Gregory Stevenson, Jianqiang Zhang (Eds.), “Diseases of Swine,” 11 (2019), Wiley Blackwell.

Campbell, Joy M, Joe D Crenshaw & Javier Polo, “The biological stress of early weaned piglets”, Journal of animal science and biotechnology 4, no. 1 (2013):1-4. https://doi.org/10.1186/2049-1891-4-19

Jung M. Heo, Opapeju, F. O., Pluske, J. R., Kim, J. C., Hampson, D. J., & Charles M. Nyachoti, “Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post‐weaning diarrhoea without using in‐feed antimicrobial compounds,” Journal of animal physiology and animal nutrition 97, no. 2 (2013): 207-237. https://doi.org/10.1111/j.1439-0396.2012.01284.x

Junjie Jiang, Daiwen Chen, Bing Yu, Jun He, Jie Yu, Xiangbing Mao, Zhiqing Huang, Yuheng Luo, Junqiu Luo, Ping Zheng, “Improvement of growth performance and parameters of intestinal function in liquid fed early weanling pigs,” Journal of animal science 97, no. 7 (2019): 2725-2738. https://doi.org/10.1093/jas/skz134

Cardinal, Kátia Maria, Ines Andretta, Marcos Kipper da Silva, Thais Bastos Stefanello, Bruna Schroeder and Andréa Machado Leal Ribeiro, “Estimation of productive losses caused by withdrawal of antibiotic growth promoter from pig diets – Meta-analysis,” Scientia Agricola 78, no.1 (2021): e20200266. http://doi.org/10.1590/1678-992X-2020-0266

Cardinal, Katia Maria, Marcos Kipper, Ines Andretta and Andréa Machado Leal Ribeiro, “Withdrawal of antibiotic growth promoters from broiler diets: Performance indexes and economic impact,” Poultry science 98, no. 12 (2019): 6659-6667. https://doi.org/10.3382/ps/pez536

Mazutti, Kelly, Leandro Batista Costa, Lígia Valéria Nascimento, Tobias Fernandes Filho, Breno Castello Branco Beirão, Pedro Celso Machado Júnior, Alex Maiorka, “Effect of colistin and tylosin used as feed additives on the performance, diarrhea incidence, and immune response of nursery pigs”, Semina: Ciências Agrárias 37, no. 4 (2016): 1947. https://doi.org/10.5433/1679-0359.2016v37n4p1947

Lee, Kwang-Geun and Takayuki Shibamoto, “Antioxidant activities of volatile components isolated from Eucalyptus species,” Journal of the Science of Food and Agriculture 81, no. 15 (2001): 1573-1579. https://doi.org/10.1002/jsfa.980

Long, S. F., Xu, Y. T., Pan, L., Wang, Q. Q., Wang, C. L., Wu, J. Y., … and Piao, X. S. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets,” Animal Feed Science and Technology 235, (2018): 23-32.

Davies, Madlen and Timothy R. Walsh, “A colistin crisis in India,” The Lancet. Infectious diseases 18, no. 3 (2018): 256-257. https://doi.org/10.1016/s1473-3099(18)30072-0

Castillo, Marisol, Susana M Martín-Orúe, Miquel Nofrarías, Edgar G Manzanilla and Josep Gasa, “Changes in caecal microbiota and mucosal morphology of weaned pigs”, Veterinary microbiology 124, no. 3-4 (2007): 239-247. https://doi.org/10.1016/j.vetmic.2007.04.026

Dyar, Oliver J, Jia Yin, Lilu Ding, Karin Wikander, Tianyang Zhang, Chengtao Sun, Yang Wang, Christina Greko, Qiang Sun and Cecilia Stålsby Lundborg, “Antibiotic use in people and pigs: a One Health survey of rural residents’ knowledge, attitudes and practices in Shandong province, China”, Journal of Antimicrobial Chemotherapy 73, no. 10 (2018): 2893-2899. https://doi.org/10.1093/jac/dky240

Prudius, T. Y., Gutsol, A. V., Gutsol, N. V., & Mysenko, O. O “Globigen Jump Start usage as a replacer for blood plasma in prestarter feed for piglets,” Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, Series: Agricultural sciences 23, no. 94 (2021): 111-116. https://doi.org/10.32718/nvlvet-a9420

Guevarra, Robin B., Jun Hyung Lee, Sun Hee Lee, Min-Jae Seok, Doo Wan Kim, Bit Na Kang, Timothy J. Johnson, Richard E. Isaacson and Hyeun Bum, “Piglet gut microbial shifts early in life: causes and effects,” Journal of animal science and biotechnology 10, no. 1 (2019): 1-10. https://dx.doi.org/10.1186%2Fs40104-018-0308-3

Waititu, Samuel M., Jung M. Heo, Rob Patterson and Charles M. Nyachoti, “Dose-response effects of in-feed antibiotics on growth performance and nutrient utilization in weaned pigs fed diets supplemented with yeast-based nucleotides,” Animal Nutrition 1, no. 3 (2015): 166-169. https://doi.org/10.1016/j.aninu.2015.08.007

Xiaoyu Li, Ying Yao, Xitao Wang, Yuhong Zhen, Philip A Thacker, Lili Wang, Ming Shi, Junjun Zhao, Ying Zong, Ni Wang, Yongping Xu. “Chicken egg yolk antibodies (IgY) modulate the intestinal mucosal immune response in a mouse model of Salmonella typhimurium infection,” International immunopharmacology 36, (2016) 305-314. https://doi.org/10.1016/j.intimp.2016.04.036

Yunsheng Han, Tengfei Zhan, Chaohua Tang, Qingyu Zhao, Dieudonné M Dansou, Yanan Yu, Fellipe F Barbosa, Junmin Zhang. Effect of Replacing in-Feed Antibiotic Growth Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia coli K88. Animals 11, no. 5 (2021): 1292. https://doi.o




Want better poultry performance? Focus on gut health

LOWRES IMG

by Ruturaj Patil, Product Manager Phytogenic Liquids, EW Nutrition

Commercial poultry operations have undergone enormous changes in production practices over the last 50 years. Genetic selection for high production rates, along with upgraded management techniques and dietary measures, have led to increased performance standards in all poultry operations (Kogut et al., 2017). However, it is sensible to now look into whether poultry performance may soon reach a ceiling due to genetic and/or physiological limits. So, aiming at further performance optimization, poultry researchers and producers are now focusing on gut health.

LOWRES IMG
LOWRES IMG

Gut health management is key to sustainably improve poultry performance

The caveat, of course, is that, due to concerns about antimicrobial resistance, antimicrobial growth promoters (AGPs) no longer offer the easy answer to gut health issues they once were. To preserve antibiotics’ efficacy for cases where they are indispensable, gut health-oriented performance enhancement needs to come from other sources. This article reviews the principles of gut health management in poultry and shows how Activo liquid, a phytomolecules-based in-water solution, strengthens poultry performance by targeting gut health.

Gut health: the cradle of poultry performance

Gastrointestinal health in poultry birds encompasses three dimensions: microflora balance, gut structural integrity, and immune system status. The gut plays a vital and diverse role as it hosts most microorganisms in the body, contains more than twenty different hormones, digests and absorbs the nutrients, and accounts for 20% of body energy expenditure (Choct, 2021). When gut health is compromised, digestion and nutrient absorption are affected, with likely detrimental effects on feed conversion, followed by economic loss and greater disease susceptibility.  Disease resistance and nutrient utilization largely depend on maintaining a beneficial gut antioxidant status, improving gut integrity, and modulating the gut microbiota (Oviedo-Rondón, 2019).

In birds, the gut is separated into five distinct regions (Figure 1): crop, proventriculus, gizzard, small intestine (duodenum, jejunum, and ileum), and large intestine (ceca, cloaca, and vent). Each of these regions has a specific role in the secretion of digestive juices and enzymes, the grinding of feed particles and then the digestion and absorption of nutrients (Bailey 2019).

Schematic overview of poultry gastrointestinal tractFigure 1: Schematic overview of poultry gastrointestinal tract

Factors affecting gut health

Gut health is influenced by the balance between the physiological health status of host, the gut microbiota, and a range of specific factors, all of which producers need to consider. From a management perspective, key factors encompass deprived gut health, biosecurity, and production stress, which is elevated during certain critical stages (see table 1). Environmental factors include humidity, temperature, and ventilation. Dietary factors, such as feed and water quality, feed composition, and mycotoxin contamination, also impact the development and ongoing state of poultry birds’ intestinal microbiota.

Critical stages for gut health issues in poultry birdsTable 1: Critical stages for gut health issues in poultry birds

The future is here: antibiotic reduction through improved gut health

There is a strong trend towards antibiotic-free (ABF) poultry production, fueled by AGP bans in certain regions (such as the European Union) and increasing consumer interest in avoiding products containing traces of AGPs. ABF systems can be profitable as long as the prices for the final ABF products can cover the investment costs necessary to produce these products. Larger-scale, sustainable ABF production will depend on developing a more profound understanding of intestinal health alongside the development of practical applications that foster gut health throughout each step of the production system.

Feed additive solutions to support birds during challenging situations

Feed additive manufacturers are looking into accessible alternatives to mitigate the need for antibiotics in ABF systems, requiring enormous research and development efforts. At EW Nutrition, our approach is to offer a holistic antibiotic reduction program for gut health management in poultry. The program comprises feed- and water-based solutions to support gut health during high-challenge periods. Activo liquid, an in-water solution containing standardized amounts of selected phytomolecules, is a key component of our program. Based on its three-fold mode of action, Activo liquid provides gut health support that improves livability and feed efficiency:

  • Antimicrobial activity hinders the growth of potential pathogens
  • Better gut integrity and positive microbiota optimize feed efficiency and gut health
  • Antioxidant activity at the gut level prevent free radical formation and oxidative stress

As a water-based solution, Activo liquid provides a quick and flexible option for gut health control on poultry farms. The benefits of Activo liquid supplementation have been demonstrated through several scientific and field studies globally.

Activo liquid reduces mortality and improves feed conversion in broilers

Numerous field studies for antibiotic-free broilers across different countries and breeds show: on average, the inclusion of Activo liquid reduces mortality by 0.6% and improves FCR by 5%, compared to non-supplemented control groups (Figure 2).

Changes in livability and feed conversion rate in Activo liquid-supplemented broilersFigure 2: Changes in livability and feed conversion rate in Activo liquid-supplemented broilers

Activo Liquid supports broiler breeders from start of lay to pre-peak production

Broiler breeders are prone to gut-related issues from the start of lay to pre-peak production (age 24 to 32 weeks). This period is characterized by sudden changes in feed consumption and high production stress. Field studies from Thailand show that Activo liquid supplementation in this phase leads to improved livability and higher laying rates.

A of 34,000 female broiler breeders during the first 9 weeks of production found that for the group receiving Activo Liquid  (200 ml / 1000 L, 5 days per week, 6 hours per day):

  • The average laying rate/HH increased by 7.2 % during the trial period,
  • Nearly 3  more  hatching  eggs  per  hen  housed  and  about  5  more  hatching  eggs  than  the  genetic standard were produced, and
  • Mortality decreased by 0.2 % points compared to the control.

Another study, again evaluating the first 9 weeks of production using 20,000 birds, also found that broiler breeders supplemented with  Activo  Liquid show reduced mortality, a higher laying rate, and more hatching eggs per hen housed (Figure 3).

Performance results from Cobb broiler breeders, Activo liquid supplementation vs. controlFigure 3: Performance results from Cobb broiler breeders, Activo liquid supplementation vs. control

Activo program improves layer productivity

Commercial layers often becomes challenged due to stress originating from management issues, gut pathogens, and an improper assimilation of nutrients. The negative impact on gut health can result in poor uniformity, low livability, and impaired body weight gain. The Activo program (a combination of Activo powder and liquid) has been found to improve layer performance, likely because its phytogenic components foster better intestinal integrity and microbiome diversity.

A study of 8 replicates with 36 Hy-line brown laying hens was conducted in China, for instance, testing the inclusion of both Activo (100 g / MT of feed) and Activo Liquid (250 ml / 1000 L for 4 days, every 2 weeks, from week 15 to week 25). It found that the Activo program  can effectively support the animals in coping with NSP-rich diets (Figure 4). Supplemented layers showed 3.36% higher egg production, representing more than 3.5 eggs and more than 150 grams of additional egg mass per hen housed during the period.  Better  gut  health  in  the  Activo  Program  gut  was evidenced  by  a  better  hen  body  weight ,  as  well  as  higher  yolk  color, lower  FCR, and improved  intestinal morphology parameters.

Performance results from Hy-line layers, Activo program vs. control, body weight and FCR

Performance results from Hy-line layers, Activo program vs. control, eggsFigure 4: Performance results from Hy-line layers, Activo program vs. control

Conclusion: future improvements in poultry performance will come from the gut

As the trend towards ABF poultry production gains momentum, a concerted focus on supporting birds’ gut health is key to achieving optimal performance. Multiple field studies of Activo liquid application demonstrate that, due to their antimicrobial and antioxidant properties, the phytomolecules present in Activo liquid effectively support birds’ intestinal health during challenging periods.

In combination with good dietary, hygiene and management practices, phytomolecules offer a potent tool for reducing the use of antibiotics. The inclusion of Activo liquid in their birds’ diets allows poultry producers to achieve better gut health and, thus, stronger performance results in a sustainable way.

 


References

Bailey, Richard A. “Gut Health in Poultry: the World within – Update.” The Poultry Site, July 6, 2021. https://www.thepoultrysite.com/articles/gut-health-in-poultry-the-world-within-1.

Choct, Mingan. “The Importance of Managing Gut Health in Poultry.” Poultry Hub Australia, November 26, 2014. https://www.poultryhub.org/importance-managing-gut-health-poultry.

Kogut, Michael H., Xiaonan Yin, Jianmin Yuan, and Leon Bloom. “Gut Health in Poultry.” CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 12, no. 031 (October 1, 2017): 1–7. https://doi.org/10.1079/pavsnnr201712031.

Oviedo-Rondón, Edgar O. “Holistic View of Intestinal Health in Poultry.” Animal Feed Science and Technology 250 (2019): 1–8. https://doi.org/10.1016/j.anifeedsci.2019.01.009.




8 Effective Solutions to Optimize Poultry Gut Health

poultry gu health

by Dr. Ajay Bhoyar, Global Technical Manager – Poultry, EW Nutrition

 

Necessity, goes the saying, is the mother of invention. No wonder, then, that necessity is driving innovation in the poultry industry.  A few distinct such drivers of change stand out:

Genetic improvements: Significant genetic improvements have consistently increased the production performance of breeders, as well as commercial broilers and layers. The genetically improved breeds demand improved nutrition and management practices.

Feed ingredient prices/availability: Corn and soybean meal are the main feed ingredients in poultry feed. Consequently any fluctuations in their prices have a high impact on the cost of production of eggs and meat. During the short span of the last 5 years, US corn and soybean meal prices have increased by around 54% and 68%, respectively. The optimum utilization of available feed ingredients and improvements in nutrient availability continue to be the key areas of interest for the poultry industry.

Consumer preference and regulatory changes: In certain geographies, these changes have resulted into 3 major trends in the poultry industry: antibiotics reduction (ABR), cage-free rearing, and food safety. The trend in the production and consumption of antibiotic-free meat products is growing faster than ever across the globe.

Antibiotics reduction (ABR): a key global trend

Apart from veterinary use, antibiotics are used as feed additives —antibiotic growth promoters (AGP) in animal production. Alarming levels of resistance to antibiotics have been reported in countries of all income levels, with the result that common diseases are becoming untreatable, and life-saving medical procedures riskier to perform.  Misuse and overuse of antimicrobials are the main drivers in the development of drug-resistant pathogens. (WHO/ https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance )

Antibiotic-free chicken production has gained a lot of momentum in the recent past. Over the past years, consumer preferences in the US resulted in a significant increase in the production of antibiotics-free (ABF) broiler chicken meat. In effect, the number of birds produced in “no antibiotics ever” (NAE) programs in the U.S. today is now at more than 50 percent (Poultry Health Today, 2019).

The reduction of antibiotic use poses some challenges to poultry producers. Apart from increased capital investment for modifications in feed mills and farms, increase in feed additive cost, the main challenge due to the removal of AGPs from feed can be the reduced production performance of poultry, mainly due to increased gut health issues.

Good gut health is a must for profitable production

“The intestinal health of poultry has broad implications for the systemic health of birds, animal welfare, the production efficiency of flocks, food safety, and environmental impact,” state Oviedo-Rondón (2019). The main challenges for ABF chicken or turkey production fall under the same heading of gut health, in particular the prevention and control of coccidiosis and necrotic enteritis (Cervantes, 2015).

What are the most effective ways to mitigate gut health challenges?

Depending on specific production needs and challenges, various technologies are used by the poultry producers to address gut health issues. Some of the most commonly used innovative technologies include:

Dietary Fibers (DF)

Scientists have found that DF have an enormous impact on the gastrointestinal tract (GIT) development, digestive physiology, including nutrient digestion, fermentation, and absorption processes of poultry (Jha & Mishra, 2021).

The water-insoluble fibers are seen as functional nutrients, as they can escape digestion and modulate nutrient digestion: “A moderate level of insoluble fiber in poultry diets may increase chyme retention time in the upper part of the GIT, stimulating gizzard development and endogenous enzyme production, improving the digestibility of starch, lipids, and other dietary components” (Mateos et.al. 2012). The insoluble DF, when used in amounts between 3–5% in the diet, could have significant effects on intestinal development and nutrient digestibility.

Dietary fibers influence the development of the gizzard in poultry birds.  A well-developed gizzard is a must for good gut health. Jiménez-Moreno & Mateos (2012) noted that the coarse fiber particles are selectively retained in the gizzard, that ensures a complete grinding and a well-regulated feed flow and secretion of digestive juices, and regulates GIT motility & feed intake. The inclusion of insoluble fibers in adequate amounts improves the gizzard function and stimulates HCl production in the proventriculus. Thus it can help in the control of gut pathogens.

Probiotics and prebiotics

Probiotics and prebiotics have drawn considerable attention as alternatives to antibiotics in animal feeds. Supplementing diets with probiotics and prebiotics is a significant factor contributing to modified intestinal microflora, which, in turn, may effectively influence the birds’ growth performance and health (Yang et al. 2009).

Probiotics introduce desirable microorganisms into the intestinal tract through the diet (feed or water). They consist of live bacteria, fungi, or yeasts that positively contribute to the gastrointestinal flora. As such, they are important for a well-formed and well-maintained digestive system, and are indirectly essential to growth performance and to the overall health of animals in general. Probiotic supplementation could have the following effects, as stated by Jha et al:

  • modification of the intestinal microbiota
  • stimulation of the immune system
  • reduction in inflammatory reactions
  • prevention of pathogen colonization
  • enhancement of growth performance
  • alteration of the ileal digestibility and total tract apparent digestibility coefficient
  • decrease in ammonia and urea excretion (Jha et.al., 2020)

Probiotics can be used not just in feed and drinking water, but also in spray solutions applied to day-old chicks either in the hatchery or immediately after placement in the brooding house. This way, the beneficial microorganisms can enter the intestine earlier than through other methods (known as early seeding).

Prebiotics are also a means of increasing the beneficial bacteria in the poultry gut microbiota. Prebiotics like mannan-oligosaccharides (MOS), inulin and its hydrolysate (fructooligosaccharides: FOS), as well as other prebiotics are important contributors to the modulation of the intestinal microflora and stimulating a potential immune response, as well as stimulating the development of beneficial microorganisms. Prebiotics can also help reduce pathogen colonization in the GIT.

Feed enzymes

The role of feed enzymes in promoting the efficiency of nutrient utilization is well recognized. Recent estimates (Adeola & Cowieson, 2011) indicate that feed enzymes saved the global feed market an estimated US $3–5 billion per year. Feed Enzymes can also have a positive impact on gut health.

Among the beneficial effects of feed enzymes are:

  • Inactivating anti-nutrients in the feed ingredients
  • Unlocking nutrients otherwise unavailable to birds (e.g. Phosphorus from phytic acid)
  • Reducing harmful microbial proliferation, depriving detrimental microorganisms of nutrients
  • Reducing the undigestible components of feed, the viscosity of digesta, or the irritation to the gut mucosa that causes inflammation.

Enzymes also generate metabolites that promote microbial diversity, which helps to maintain gut ecosystems that are more stable and more likely to inhibit pathogen proliferation (Bedford, 1995; Kiarie et al., 2013). Feed enzymes are heat-sensitive and tend to lose their activity potential during pelleted feed manufacturing. There has been a significant interest in the application of intrinsically heat stable enzymes for more efficient action. Apart from coated feed enzymes, the post pellet liquid application (PPLA) of feed enzymes has increased in the recent past.

Toxin binders & antioxidants

Intestinal health problems can often be preempted, especially in poultry companies with ABF production programs, by mitigating the danger of mycotoxins in feedstuffs and rancid fats (Murugesan et al., 2015; Grenier and Applegate, 2013). Mycotoxins can compromise several key functions of GIT. This often results in decreased nutrient absorption (by decreasing the available surface area), modulation of nutrient transporters, and loss of barrier function (Grenier and Applegate, 2013). Some mycotoxins “encourage” the persistence of intestinal pathogens and thus enhance the possibility of intestinal inflammation.

Rancid fats and oils have been linked to the pathogenesis of enteric diseases (Hoerr, 1998; Butcher and Miles, 2000; Collet, 2005). The oxidation of oils and fats negatively impacts the energy content of these ingredients. The addition of feed antioxidants during the rendering process/ blending of fats and oils, and proper storage and transport before final use in feed can control rancidity in oils and fats. Proper fat storage conditions in tanks and transportation lines should be constantly monitored to prevent the development of rancidity in the feed mill. Antioxidants and mycotoxin binders can reduce the effects of mycotoxins and peroxide, especially, but not only, in ABF programs (Yegani and Korver, 2008).

Organic acids

Organic acids are compounds with acidic properties that occur naturally and include carbon. As the digestive process includes microbial fermentation, beneficial bacteria which naturally reside in the crop, intestines, and ceca produce such organic acids (Huyghebaert et.al. 2010). The inclusion of organic acids in poultry diets can improve gut health, increase endogenous digestive enzyme secretion and activity, and improve nutrient digestibility. Thus they generally contribute to the overall gut health of the animal.

The inclusion of organic acids in feed can help not only decontaminate feed but also have the potential to reduce enteric pathogens in poultry. The acids can cross the bacterial cell wall and disrupt the normal actions of certain types of bacteria, including Salmonella spp, E. coli, Clostridia spp, Listeria spp. and some coliforms.

Organic acids are also used in drinking water to help lower the microbial count. This can be achieved by lowering the pH of water and by the prevention/removal of biofilms in the water lines.

However, organic acids should be included in the feed or water with caution. The limitations for use of organic acids in animal production can be:

  • Bacterial resistance to organic acids over long-term use
  • Adverse effect on feed palatability, leading to feed refusal
  • Organic acids are corrosive in nature and can damage poultry equipment
  • Buffering capacity of dietary ingredients can impact efficacy

Essential oils/Phytomolecules

Essential oils (EOs) are raw extracts from plants (herbs, flowers, leaves, roots, fruit etc.). The beneficial effects of EOs include appetite stimulation, improvement of enzyme secretion related to food digestion, and immune response activation (Krishan and Narang, 2014)

EOs are an unpurified mix of different phytomolecules. The raw extract from oregano is a mix of various phytomolecules (terpenoids) like carvacrol, thymol, and p-cymene. Carvacrol, for instance, is a monoterpinoid found in various plants such as oregano or thyme. A phytomolecule is one active compound.

These botanicals have received increased attention as possible growth performance enhancers for animals in the last decade because of their beneficial influence on lipid metabolism, as well as their antimicrobial and antioxidant properties (Botsoglou et al., 2002), their ability to stimulate digestion (Hernandez et al., 2004), their immune-enhancing activity, and anti-inflammatory potential (Acamovic and Brooker, 2005). Many studies have reported on the supplementation of poultry diets with essential oils that enhanced weight gain, improved carcass quality, and reduced mortality rates (Williams and Losa, 2001). The use of specific EO blends can be effective in reducing the colonization and proliferation of Clostridium perfringens and controlling coccidia infections. Consequently, it may also help reduce necrotic enteritis (Guo et al., 2004; Mitsch et al., 2004; Oviedo-Rondón et al., 2005, 2006a, 2010).

Mode of action of phytomolecules

The gut health optimizing mode of action of phytomolecule-based preparations like Activo® (EW Nutrition) can be described as follows:

Digestive

The digestive properties increase the secretion of digestive enzymes and enhance gut motility. A “significant increase in pancreatic trypsin, amylase, and maltase activities in broilers fed different blends of commercial essential oils” has been reported as well (Jang et al., 2007). The essential oils in carvacrol, for instance, have positive effects on growth performance and the intestinal barrier function of broilers. They were also able to support repairing the intestinal damage caused by lipopolysaccharides (Liu et al. 2020).

Antimicrobial

The antimicrobial properties of phytomolecules can impede the growth of potential pathogens. Thymol, eugenol, and carvacrol have been shown to have “synergistic or additive antimicrobial effects when combined at lower concentrations” (Bassolé and Juliani, 2012). In in vivo studies, essential oils used either individually or in combination “have shown clear growth inhibition of Clostridium perfringens and E. coli in the hindgut and ameliorated intestinal lesions and weight loss than the challenged control birds” (Jamroz et al., 2006, Jerzsele et al., 2012, Mitsch et al., 2004).

One well-known mechanism of antibacterial activity is linked to the phytomolecules’  hydrophobic nature. This characteristic helps disrupt the permeability of cell membranes and cell homeostasis. The consequence of this disruption is the loss of cellular components, influx of other substances, or even cell death (Brenes and Roura, 2010, Solórzano-Santos and Miranda-Novales, 2012, Windisch et al., 2008, O’Bryan et al., 2015).

Antioxidant

The antioxidant properties at the gut level prevent free radical formation and oxidative stress. Thymol and carvacrol have been shown to inhibit lipid peroxidation (Hashemipour et.al. 2013), a mechanism leading to the oxidative destruction of cellular membranes (Rhee et al., 1996). This destruction can ultimately lead to cell death and to the production of toxic and reactive aldehyde metabolites, known as free radicals. Among these free radicals, malondialdehyde (MDA) as a final product of lipid peroxidation has often been used for determining oxidative damage (Jensen et al., 1997).  Thymol and carvacrol both have strong antioxidant activity (Yanishlieva et al., 1999). Oregano “added in doses of 50 to 100 mg/kg to the diet of chickens exerted an antioxidant effect in the broiler tissues” (Botsoglou et al., 2002).

It has also been suggested that chicken body oxidative balance can benefit from essential oils. Karadas et al. (2014) fed a blend of carvacrol, cinnamaldehyde, and capsicum oleoresin to Ross 308 broilers, and found a significant increase in the hepatic concentration of carotenoids and coenzyme Q10 at d 21 of age.

Essential oils, or phytomolecules, are highly volatile substances and are susceptible to changes caused by external factors such as light, oxygen, and temperature, in addition to being prone to evaporating. They need to be protected/micro-encapsulated during the process of feed manufacturing. The advantages of matrix encapsulation include

  • a slow and gradual release of active ingredients in the digestive tract
  • protection of phytomolecules from oxidation and other harsh conditions during feed processing
  • prevention of any negative effects on palatability of feed

Above: Micro-encapsulation protecting phytomolecules in feed processing

Apart from use in feed, the liquid phytomolecules preparations for drinking water use can prove to be beneficial in preventing and controling losses during challenging periods of the birds’ life (feed change, handling, environmental stress, etc.).  The liquid preparations have the potential to reduce morbidity and mortality in poultry houses and thus the use therapeutic antibiotics. Barrios et al. (2021) suggested that Activo and Activo Liquid may ameliorate the impact of Necrotic Enteritis on broilers and further hypothesized that the effects of Activo Liquid were particularly important in improving overall mortality.

Conclusion

The prevailing driving forces of the market will continue to challenge the dynamic poultry industry. Still, gut health challenges in ABF poultry production can be alleviated with multifactorial approaches, including changes in nutrition and improved management practices. Innovative feed additive technologies have contributed to reducing production losses triggered by the removal of AGPs in poultry production.

Essential oils/phytomolecules are one such promising technology, with proven benefits in terms of the production performance of poultry. Phytomolecules are generally recognized as safe and are commonly used in the food industry. Some of the phytomolecules combinations have multiple modes of action, supporting an efficient and sustainable reduction in antibiotics use in poultry production.

To make ABF programs successful, however, more attention needs to be given to the whole production system, not only to feed, feed additives or control of a few enteric pathogens. Housing, management, water quality and biosecurity at both breeder and grow-out levels are critical in ABF production.

 


References

Acamovic, T., and J. D. Brooker. 2005. Biochemistry of plant secondary metabolites and their effects in animals. Proc. Nutr. Soc. 64:403–412.

Adeola, O & Cowieson, AJ (2011) Opportunities and challenges in using exogenous enzymes to improve non-ruminant animal production. J Anim Sci 89, 3189–3218. CrossRef  Google Scholar

Barrios Miguel, Palanisamy Kowsigaraj and Bhoyar Ajay. 2021 Effects of Activo and Activo Liquid on broiler chickens under a Necrotic Enteritis challenge. International poultry scientific forum. Jan 25-26, 2021.

Bassolé, I.H.N. and Juliani, H.R., 2012. Essential oils in combination and their antimicrobial properties. Molecules, 17(4), pp.3989-4006.

Bedford M. R. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci. Technol., 53 (1995), pp. 145-155

Botsoglou, N.A., Florou-Paneri, P., Christaki, E., Fletouris, D.J. and Spais, A.B., 2002. Effect of dietary oregano essential oil on performance of chickens and on iron-induced lipid oxidation of breast, thigh and abdominal fat tissues. British poultry science43(2), pp.223-230.

Brenes, A. and Roura, E., 2010. Essential oils in poultry nutrition: Main effects and modes of action. Animal feed science and technology, 158(1-2), pp.1-14.

Chowdhury S, Mandal G. P., Patra  A K, Different essential oils in diets of chickens: 1. Growth performance, nutrient utilisation, nitrogen excretion, carcass traits and chemical composition of meat, Animal Feed Science and Technology, Volume 236, 2018, Pages 86-97,

Grenier, B. and Applegate, T.J., 2013. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins, 5(2), pp.396-430.

Guo, F.C., Kwakkel, R.P., Williams, B.A., Li, W.K., Li, H.S., Luo, J.Y., Li, X.P., Wei, Y.X., Yan, Z.T. and Verstegen, M.W.A., 2004. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on growth performance of broilers. British Poultry Science45(5), pp.684-694.

Hashemipour H, Kermanshahi H, Golian A, Veldkamp T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poultry Science. Volume 92. Issue 8. 2013, Pp 2059-2069,

Hector M. Cervantes, Antibiotic-free poultry production: Is it sustainable?, Journal of Applied Poultry Research, Volume 24, Issue 1, 2015, Pages 91-97

Hernandez, F., J. Madrid, V. Garcia, J. Orengo, and M. D. Megias. 2004. Influence of two plant extracts on broiler performance, digestibility, and digestive organ size. Poult. Sci. 83:169–174.

Huyghebaert G, Ducatelle R, Van Immerseel F. An update on alternative to antimicrobial growth promoter for broilers. Vet J. (2010) 187:182–8. doi: 10.1016/j.tvjl.2010.03.003

Jamroz, D., Wertelecki, T., Houszka, M. and Kamel, C., 2006. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. Journal of Animal Physiology and Animal Nutrition, 90(5‐6), pp.255-268.

Jang IS, Ko YH, Kang SY, Lee CY. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology. 2007 Apr 2;134(3-4):304-15.

Jensen, C., Engberg, R., Jakobsen, K., Skibsted, L.H. and Bertelsen, G., 1997. Influence of the oxidative quality of dietary oil on broiler meat storage stability. Meat Science, 47(3-4), pp.211-222.

Jerzsele, A., Szeker, K., Csizinszky, R., Gere, E., Jakab, C., Mallo, J.J. and Galfi, P., 2012. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poultry Science, 91(4), pp.837-843.

Jha, Rajesh, Das Razib, Oak Sophia, and Mishra Pavin. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals : an open access journal from MDPI vol. 10,10 1863. 13 Oct. 2020, doi:10.3390/ani10101863

Jha, R., Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Animal Sci Biotechnol 12, 51 (2021). https://doi.org/10.1186/s40104-021-00576-0.

Jiménez-Moreno E, Mateos GG. Use of dietery fiber in broilers. San Juan del Rio, Queretaro: In Memorias De La Sexta Reunión Anual Aecacem 2013; 2013.

Karadas F., Pirgozliev V., Rose S., Dimitrov D., Oduguwa O., Bravo D. Dietary essential oils improve the hepatic antioxidative status of broiler chickens. Br Poult Sci. 2014;55:329–334. [PubMed] [Google Scholar] [Ref list]

Kiarie, E., Romero, L., & Nyachoti, C. (2013). The role of added feed enzymes in promoting gut health in swine and poultry. Nutrition Research Reviews, 26(1), 71-88. doi:10.1017/S0954422413000048

Krishan and Narang J. Adv. Vet. Anim. Res., 1(4): 156-162, December 2014

Liu, S., Song, M., Yun, W., Lee, J., Lee, C., Kwak, W., Han, N., Kim, H. and Cho, J., 2018. Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. Journal of animal physiology and animal nutrition, 102(5), pp.1257-1265.

Liu, S., Song, M., Yun, W., Lee, J., Kim, H. and Cho, J., 2020. Effect of carvacrol essential oils on growth performance and intestinal barrier function in broilers with lipopolysaccharide challenge. Animal Production Science, 60(4), pp.545-552.

Mateos GG, Jiménez-Moreno E, Serrano MP, Lázaro RP. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J Appl Poult Res. 2012;21(1):156–74.

Mitsch, P., Zitterl-Eglseer, K., Köhler, B., Gabler, C., Losa, R. and Zimpernik, I., 2004. The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poultry science83(4), pp.669-675.

Murugesan, G.R., Ledoux, D.R., Naehrer, K., Berthiller, F., Applegate, T.J., Grenier, B., Phillips, T.D. and Schatzmayr, G., 2015. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry science, 94(6), pp.1298-1315.

O’Bryan, C.A., Pendleton, S.J., Crandall, P.G. and Ricke, S.C., 2015. Potential of plant essential oils and their components in animal agriculture–in vitro studies on antibacterial mode of action. Frontiers in veterinary science, 2, p.35.

Oviedo-Rondón, Edgar O., et al. “Ileal and caecal microbial populations in broilers given specific essential oil blends and probiotics in two consecutive grow-outs.” Avian Biology Research 3.4 (2010): 157-169.

Oviedo-Rondón Edgar O., Holistic view of intestinal health in poultry, Animal Feed Science and Technology, Volume 250, 2019, Pages 1-8

Papatisiros VG, Katsoulos PD, Koutoulis KC, Karatzia M, Dedousi A, Christodoulopoulos G. Alternatives to antibiotics for farm animals. CAB Rev Ag Vet Sci Nutr Res. (2013) 8:1–15. doi: 10.1079/PAVSNNR20138032

Solórzano-Santos, F. and Miranda-Novales, M.G., 2012. Essential oils from aromatic herbs as antimicrobial agents. Current opinion in biotechnology, 23(2), pp.136-141.

Williams, P., and R. Losa. 2001. The use of essential oils and their compounds in poultry nutrition. World Poult. 17:14–15.

Windisch, W., Schedle, K., Plitzner, C. and Kroismayr, A., 2008. Use of phytogenic products as feed additives for swine and poultry. Journal of animal science, 86(suppl_14), pp.E140-E148.

Yang Y, Iji P, Choct M. 2009. Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World Poultry Sci J. 65:97–114. doi: 10.1017/S0043933909000087 [Taylor & Francis Online][Web of Science ®][Google Scholar]

Yanishlieva, N.V., Marinova, E.M., Gordon, M.H. and Raneva, V.G., 1999. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry64(1), pp.59-66.

Yegani, M. and Korver, D.R., 2008. Factors affecting intestinal health in poultry. Poultry science, 87(10), pp.2052-2063.

Zhai, H., H. Liu, Shikui Wang, Jinlong Wu and Anna-Maria Kluenter. “Potential of essential oils for poultry and pigs.” Animal Nutrition 4 (2018): 179 – 186.

 




Mitigating Necrotic Enteritis through Natural Alternatives in Antibiotic-Free Production Systems

clostridium perfringens 1900

by EW Nutrition USA, Inc.

 

In the poultry industry, Necrotic Enteritis is of great interest due to the potential detrimental growth effects it may have in a flock, even at subclinical levels50. Coccidiostats and antibiotics have been used for a long time to get the disease-causing bacterium Clostridium perfringens under control, but with increasing antimicrobial resistance, alternative approaches are required. This article aims to give an overview of the disease and the measures against it.

Clostridium perfringens – a ubiquitous, highly resilient bacterium

Clostridium perfringens is a Gram-positive, spore-forming, anaerobic, rod-shaped bacterium50. This encapsulated, non-motile microorganism is fastidious in growth requirements59. Most often, complex media like cooked meat or thioglycolate broth are used as enrichment30.

It was Welch and Nuttall who first identified C. perfringens in 1892 as Bacillus aerogenes capsulatus18. In Great Britain, the bacterium was commonly known as C. welchii and sometimes called Frankel’s bacillus in Germany until designated C. perfringens by Bergey13.

Clostridium perfringens is the causal microorganism for Necrotic Enteritis (NE)14. In humans, it is one of the most common causes of foodborne illness20. The Centers for Disease Control and Prevention (CDC, 2012) estimates that nearly one million people are affected every year, making C. perfringens the third most frequent source of domestically acquired foodborne illness after Norovirus and Salmonella.

Clostridium perfringens can be found everywhere

Clostridium perfringens is found in soil, water, and other organic materials. As far as poultry facilities, C. perfringens has been isolated from litter, dust, walls, floors, fans, transportation coops, feeders, and feed89.

Additionally, C. perfringens is found in the GI tract of broiler chickens, humans, and other mammals47. When intestinal samples of broiler chickens were analyzed for C. perfringens, 75-95 % tested positive24. Drew and co-workers10 determined that C. perfringens is usually found at ~104 colony-forming units (CFU)/g of broiler digesta. These results agree with Jia et al.26, who stated that C. perfringens is present at low levels in healthy poultry. In humans, investigations in different parts of the world showed a prevalence of Clostridium perfringens between 57-94%32.

Different types of Clostridium perfringens with different toxins

There are five types (A-E) of C. perfringens, which can be identified through their toxin production (see table 1). All strains produce alpha-toxin. Furthermore, Clostridium perfringens has been described to produce eight other toxins, three (delta, theta, kappa) can be lethal, but these are seldom involved in disease origin37.

Table 1. Different types of Clostridium perfringens

    C. perfringens Type
A B C D E
Toxins Alpha x x x x x
Beta   x x    
Epsilon   x   x  
Iota         x
Enterotoxin x        
Diseases/animals18 Food-born disease/humans

NE/fowl

Dysentery/lambs

enterotoxaemia/ sheep, goats, guinea pigs

Food-born disease/humans

NE/fowl

Enterotoxaemia/

sheep

Pulpy kidney disease/lambs

Enterotoxaemia/ calves

Dysentery/sheep, guinea pigs, rabbits

 

High resilience gives an advantage against competitors

Since Clostridium perfringens is a spore-forming bacterium, it is very resilient to high temperatures, slight pH variations, and toxic chemicals43, 7.

Labbe et al.30 established that C. perfringens can reproduce at temperatures between 15-50 °C. Hence, proper refrigeration temperatures (below 10 °C) can be an effective means of control. The optimum range is between 37-47 °C, and at these temperatures, the mean generation time – the time required for the bacterial count to double – is approximately 10-12 minutes41. These short generation times allow the bacteria to outcompete other microorganisms that may need similar resources in a certain environment.

The optimum pH range of Clostridium perfringens is between 5.5-7.022. However, it can grow at a pH as low as 5 and as high as 9. In live broiler chickens, the pH in the small intestine has been determined to be between 6.00-7.78.

 

Necrotic enteritis in poultry

The disease necrotic enteritis was first described by Parish45, 46 in cockerels in England. Some of the symptoms include depression, reluctance to move, ruffled feathers, somnolence, diarrhea, loss of appetite, and anorexia21. Mortality ranges from 0-50% 6 have been reported in infected flocks. Since then, virtually every area that raises poultry has reported signs of necrotic enteritis.

Clostridium perfringens – How NE unravels

As already mentioned, 104 colony-forming units (CFU)/g of broiler digesta10 are normal and can be found in healthy birds. C. perfringens becomes problematic when counts reach 107-108 CFU/g6.

Necrotic enteritis is caused by types A and C of Clostridium perfringens, but normally, predisposing factors “set the stage”24, 48. This could be seen in an investigation where they wanted to create a model to reproduce NE in a laboratory setting. Researchers realized that inoculation of C. perfringens alone did not cause the disease found in the field48. Therefore, it was assessed that certain cofactors must play a significant role in the pathogenicity of C. perfringens. Williams57 reviewed concurrent infections of coccidiosis and necrotic enteritis in chickens (Figure 1). The copious interactions of these diseases with predisposing factors, control methods, sources of infection, and disease form is a testament to the complexity of this poultry industry matter.

Coccidiosis creates access

Shane et al.53 noted that several authors had considered coccidiosis to be a predisposing factor for NE. They proceeded to describe the pathogenesis of Eimeria acervulina, one of the protozoa responsible for coccidiosis in poultry. When the oocysts are ingested, they quickly attach to the intestinal wall causing lesions where the protozoa reproduce numerous times. These are the lesions to which C. perfringens attaches.

What happens in the animal?

Long et al.33 proposed the pathogenesis for NE: First, epithelial cells are vacuolated, and the epithelium lifts off the lamina propria, which is congested and edematous. These lesions can be caused by a combination of factors like toxin production and/or, as just mentioned, coccidiosis. Clostridium perfringens cells attach to the lamina propria, where they thrive. The tissue becomes necrotic as large numbers of heterophils, a type of phagocyte, flood the foci (sites of lesions).

A combination of disease-inducing factors such as bacteria proliferation, heterophil lysis, and villus’ necrosis seem to develop quickly. The inflammation zone then becomes riddled with mononuclear cells, cells containing lymphocytes, antigen-presenting cells, and eosinophilic-staining (proteinaceous) amorphous material. This necrotizing process moves from the tip of the villi to the crypt.

Chronic version

In chronic cases, villi may be found to have multiple cysts from recurrent necrosis. In birds that overcome the disease, injured epithelial cells are replaced by newly formed reticular structures. These new cells travel from the crypt to the tip of the villi and replace the old, damaged cells. The result is a short, flat villus with a reduced surface area for nutrient absorption44, 45, 34. These morphologically altered villi are the necrotic lesions found in the field and some C. perfringens challenge trials (Figure 2).

Acute form

The acute form of NE results in enlarged lesions along the gut wall, and the epithelium becomes eroded and detached; consequently, a diphtheritic membrane is formed. This yellow, green, or brownish pseudo-membrane is called the “Turkish towel,” which describes the appearance of the friable, gas-filled, foul-smelling GI tract57.

Subclinical form

Poultry producers are not only concerned with the acute form of NE. Recent studies have shown that the disease’s subclinical form can be as detrimental as the acute illness19. Lovland and co-workers35 stated that this symptomless disease is often overlooked at the farm, and the effects are only noticed at the processing facility.

Subclinical NE (SNE) can cause cholangiohepatitis, a condition where the liver is enlarged with pale reticular patterns and sometimes small, pale foci. In the United Kingdom, it was estimated that 4% of broiler carcasses and 12% of livers are condemned at processing plants due to clostridial infection; thereby, reducing profit36. Moreover, sparse lesions that may be found in a case of SNE may be enough to hinder growth performance; thus, resulting in an underproductive flock39.

 

Feeding Against Necrotic Enteritis

It has been reported that diet formulation has the greatest impact on the prevalence of C. perfringens in chicken GI tracts61. The poultry industry formulates diets on a least-cost basis, which may become problematic if nutritionists do not take into consideration the pathological consequences that some ingredients may have in the GI tracts of chickens. Every feed ingredient has a specific purpose in the diet. For instance, cereal grains are fed for their energy concentration as well as fiber. Also, some grain and animal/plant meals are used for their protein content. Since these ingredients are obtained from different sources, they are highly variable in macro and micronutrients1.

The diet provides the conditions for proliferation

There are multiple elements that affect the proliferation of C. perfringens in chicken intestines, one of the most critical factors being diet formulation5, 36. Some feed ingredients have been found to exacerbate the numbers of C. perfringens in chickens’ gastrointestinal tract. Diets formulated with wheat increased NE intestinal lesion scores compared to broiler chickens fed a corn-based diet4. In another study, Drew et al.10 investigated the effects of different protein sources on the intestinal populations of C. perfringens in broiler chickens. Diets were formulated to contain 230, 315, and 400 g/kg of fishmeal or soy protein concentrate (SPC). The numbers of C. perfringens in the ileum and ceca increased when the amount of protein increased from 230 to 400 g/kg.

Type of grain influences the occurrence of Clostridium perfringens

Authors have studied the effects of grain inclusion on gut microbiota, and it is well established that small cereal grains such as barley, rye, and wheat tend to increase the prevalence of C. perfringens in the GI tract. Shakouri et al.52 investigated the influence of barley, sorghum, wheat, and corn on counts of C. perfringens in the different intestinal segments. Corn and wheat had the lowest C. perfringens counts, followed by sorghum, while barley yielded the highest counts. These findings agree with Riddell and Kong51.

Other researchers have concluded that the increase in gut viscosity and increased chyme transit time elicit the overgrowth of C. perfringens in the intestines28. Grains like wheat and barley contain high amounts of non-starch polysaccharides (NSP), which increase viscosity26. Furthermore, it has been alleged that, since these grains are high in NSP, the bird cannot absorb nutrients as efficiently, thereby leaving them for microbes like C. perfringens to consume31.

Enzymes improve nutrient availability in the presence of C. perfringens

Shakori et al.52 and Jia et al.26 also studied the impact of several diets with the inclusion of a blend of carbohydrases such as glucanase and xylanase. Their findings suggested that enzyme addition did not affect counts of C. perfringens in the different intestinal sections. However, they did find an improvement in growth performance. They stated that enzymes improved chyme viscosity by degrading the encapsulation of nutrients in diets.

For this reason, researchers have investigated the use of enzymes in wheat and barley-based diets on the incidence of C. perfringens in chicken intestines. Jackson et al.25 studied the effect of beta-mannanase addition on flocks infected with Eimeria spp. and C. perfringens. They found that feeding this enzyme significantly reduced the impact of C. perfringens on the performance of infected flocks as well as intestinal lesion scores. Moreover, the authors explained that this might be due to beta-mannanase crossing the intestinal wall to provoke an immune response. They determined that this enzyme tended to ameliorate the symptoms of necrotic enteritis, but not significantly.

MOS may have a positive impact on immunity

Hofacre et al. 23 found similar results when birds were fed mannan-oligosaccharides. A marked effect was only found when mannan-oligosaccharides were included along with lactic acid-producing, competitive exclusion products (probiotics).

The feed form is decisive

Feed form has also been investigated on the incidence of C. perfringens. When birds were fed whole wheat compared to ground, researchers found reduced counts of C. perfringens in the gut2. These results can be extrapolated to the findings of Engberg et al.11. They found that when birds were fed coarse versus fine mash or pellets, C. perfringens counts were consistently higher in flocks fed mash diets. These authors concluded that feeding pellets or whole grains increases gizzard activity, which consequently triggers hydrochloric acid production and decreases pH in the GI tract. This drop in pH of approximately 0.5 units may be responsible for decreased C. perfringens counts.

Mind the protein source

Another well-established fact is that the C. perfringens population can be affected by the type of the protein source and the inclusion rates.

Potato is worse than fish

Palliyeguru et al. 42 studied the inclusion of protein concentrates (potato, fish, and soy) on subclinical NE. They determined that the potato-containing diet resulted in the highest incidence of C. perfringens in the gut, followed by fish and soy. Also, the potato-containing diet had the highest activity of trypsin inhibitors and lowest lipid content. Increased trypsin inhibition does not allow for the inactivation of alpha and beta toxins produced by C. perfringens, resulting in increased intestinal wall lesions.

Fish is worse than soy due to the amino acid composition

Drew et al.10 formulated diets containing fishmeal or a soy protein concentrate at different levels. Feeding dietary fishmeal resulted in a higher incidence of C. perfringens as compared to the soy protein diet. Furthermore, with increasing levels of soy and fishmeal diets, counts of C. perfringens increased as well. A notable difference in fishmeal protein concentrate compared to the soy protein concentrate was the amino acid ratio in this experiment; the methionine and glycine ratios were 1.3 times greater in fishmeal diets. Muhammed et al.40 determined that methionine was required for C. perfringens sporulation. This may be of interest to nutritionists since some authors have estimated that 10-20 % of synthetic amino acids are not absorbed and reach the lower intestinal tract, i.e., ceca; thereby, aiding in the proliferation of C. perfringens.

Fat source – animal fat is critical

The effects of fat sources on C. perfringens population remain largely unknown. Knarreborg et al.29 studied the bacterial microflora in chicken intestines after feeding different dietary fats (soy oil and a tallow and lard mix) in rations containing antibiotic growth promoters (AGP). When soy oil was fed, C. perfringens counts were significantly lower than diets containing animal fats. The authors stated that, since plant oils contain higher amounts of unsaturated fatty acids, the chyme in birds fed oil diets would have decreased viscosity, decreasing transit time. Furthermore, an additive effect was found when soy oil was provided along with AGP, which may be due to facilitated antibiotic dispersion caused by the oil’s lipophilic properties. Knarreborg et al. (2002) investigated the effects of fat sources on C. perfringens. They found that total anaerobic counts increased with animal fat addition. However, zinc bacitracin was included in their diets, specifically targeting Gram-positive microorganisms like C. perfringens; thus, potentially biasing their results.

Antibiotics and coccidiostats in the diet – helpful, but finite

Antibiotics and coccidiostats have been commonly included in poultry diets since the mid-1940s and 1950s61, 58.

Prescott et al.49 studied the inclusion of zinc bacitracin to prevent necrotic enteritis and concluded that it successfully controlled the C. perfringens challenge. Flocks in the antibiotic treatments were able to overcome disease and perform similarly to unchallenged birds. Multiple authors have replicated these results using different antibiotics such as virginiamycin and salinomycin17, 3, 11.

Improvements in flock performance with the inclusion of antibiotics and coccidiostats are well understood and omnipresent in the literature. However, the potential loss of subtherapeutic antibiotic usage in livestock in the United States due to increasing concerns over antimicrobial resistance and consumer demands makes research of viable alternatives to these compounds paramount.

So, what are your alternatives?

A lot of different approaches are possible. In general, these measures should act against Clostridium perfringens while supporting gut health.

Tested substances without the desired effects

Lastly, multiple options have been studied to control C. perfringens in poultry. Some researchers have studied the inclusion of complex carbohydrates and fibers like pine shavings, guar gum, and pectin with limited success4, 31. Another popular alternative is the use of competitive exclusion-based products such as prebiotics and probiotics27, 16. Still, these products failed to yield consistent results.

Other options that have been investigated are the addition of lactose and organic acids54, 38. Potassium diformate did not produce lowered counts of C. perfringens. Lactose reduced C. perfringens counts but resulted in undesirable ceca characteristics including, enlargement and increased fermentation54.

Essential oils alone or in combination may be a solution

Mitsch and coworkers39 investigated the efficacy of two blends of essential oils with positive effects on the reduction of C. perfringens from the gut and feces of broilers. Gaucher and coworkers15 compared growth performance and gut health of broilers fed a conventional (anticoccidials and AGPs) vs. ABF (Coccidiosis vaccine and essential oil blends) diet. They established that livability, age at slaughter, and percentage of condemnation did not change with diet type. However, average daily weight gain and FCR were negatively affected. Furthermore, NE was more prevalent in ABF flocks.  Still, many authors agree that a multifactorial approach is necessary if antibiotics should be completely replaced by these strategies36.

A contemporary study by Wati et al.56 aimed to compare AGPs to a commercial blend of essential oils fed to broilers. Authors found that chickens fed essential oils had body weights and FCRs that were statistically similar to the AGP treatment. Moreover, both AGP and essential oil treatments had statistically lower counts of Salmonella and E. coli after an oral challenge than the control group.

Conclusion

C. perfringens is a potential pathogen found in every place poultry is raised. Therefore, we must continue to identify strategies to control the development of Necrotic Enteritis. Since antibiotics alone may not always successfully control C. perfringens and have the potential for subtherapeutic use loss in the US, a multifactorial approach must be considered and investigated. Grain size, enzymes, feed form, animal protein source, fats, and feed supplements such as essential oils can affect the proliferation of C. perfringens. Nutritionists, veterinarians, and live production personnel must come together to develop the best approach for their specific complex circumstances.

Figure 1. Interaction between coccidiosis and NE with environmental factors

Solid-line arrows are beneficial in controlling disease. Dashed-line arrows impart high disease risk factors. Double-line arrows depict major disease-risk factors. AGP, antibiotic growth promoter; CIA, chick infectious anemia; CEP, competitive exclusion product; Cp, Clostridium perfringens; IBD, infectious bursal disease; MD, Marek’s disease; NE, necrotic enteritis. (Williams, R.B. 2005)

 Figure 2. Necrotic Enteritis lesions in chicken intestines

Yellowish necrotic lesions in three intestinal samples. Intestines A and C show a few marked lesions. Intestine B shows clusters of lesions typical of the “Turkish towel” syndrome. (Source: http://www.mdpi.com/2072-6651/2/7/1913/htm. Accessed: January 14, 2021).

 

 

References
  1. Bedford, M.R. 1996. Interaction Between Ingested Feed and the Digestive System in Poultry. Applied Poultry Science 5:86-95.
  2. Bjerrum, L., K. Pedersen, and R. M. Engberg. 2005. The Influence of Whole Wheat Feeding on Salmonella Infection and Gut Flora Composition in Broilers. Avian Disease 49:9-15.
  3. Bolder, N. M., J. A. Wagenaar, F. F. Putirulan, K. T. Veldman, and M. Sommer. 1999. The Effect of Flavophospholipol (FlavomycinR) and Salinomycin Sodium (SacoxR) on the Excretion of Clostridium perfringens, Salmonella enteritidis, and Campylobacter jejuni in Broilers After Experimental Infection. Poultry Science 78:1681-1689.
  4. Branton, S. L., B. D. Lott, J. W. Deaton, W. R. Maslin, F. W. Austin, L. M. Pote, R. W. Keirs, M. A. Latour, and E. J. Day. 1997. The Effect of Added Complex Carbohydrates or Added Dietary Fiber on Necrotic Enteritis Lesions in Broiler Chickens. Poultry Science 76:24-28.
  5. Choct, M. 2009. Managing Gut Health through Nutrition. British Poultry Science 50:9-15.
  6. Cooper, K., and J. G. Songer. 2009. Necrotic Enteritis in Chickens: A Paradigm of Enteric Infection by Clostridium perfringens Type A. Veterinary anaerobes and diseases 15:55-60.
  7. Craven, S. E., N. J. Stern, N. A. Cox, J. S. Bailey, and M. Berrang. 1999. Cecal Carriage of Clostridium perfringens in Broiler Chickens Given Mucosal Starter CultureTM. Avian Diseases 43:484-490.
  8. Craven, S. E., N. A. Cox, N. J. Stern, and J. M. Mauldin. 2001a. Prevalence of Clostridium perfringens in Commercial Broiler Hatcheries. Avian Diseases 45:1050-1053.
  9. Craven, S. E., N. J. Stern, J. S. Bailey, and N. A. Cox. 2001b. Incidence of Clostridium perfringens in Broiler Chickens and Their Environment during Production and Processing. Avian Diseases 45:887-896.
  10. Drew, M. D., N. A. Syed, B. G. Goldade, B. Laarveld, and A. G. Van Kessel. 2004. Effects of Dietary Protein Source and Level on Intestinal Populations of Clostridium perfringens in Broiler Chickens. Poultry Science 83:414-420.
  11. Engberg, R. M., M. S. Hedemann, Leser, T.D., and Jensen, B.B. 2000. Effect of Bacitracin and Salinomycin on Intestinal Microflora and Performance of Broilers. Poultry Science 79: 1311-1319.
  12. Engberg, R. M., M. S. Hedemann, and Jensen, B.B. 2002. The Influence of Grinding and Pelleting of Feed on the Microbial Composition and Activity in the Digestive Tract of Broiler Chickens. British Poultry Science 44:569-579.
  13. Freeman, B.A. 1979. Burrows Textbook of Microbiology. W.B. Saunders Company, Philadelphia, Pennsylvania, USA.
  14. Fukata, T., Y. Hadate, E. Baba, T. Uemura, and A. Arakawa. 1988. Influence of Clostridium perfringens and its Toxin in Germ-free Chickens. Research in Veterinary Science 44:68-70.
  15. Gaucher, M.L., Quessy, S., Letellier, A., Arsenault, J., and M. Boulianne. 2015. Impact of a drug-free program on broiler chicken growth performances, gut health, Clostridium perfringens and Campylobacter jejuni occurrences at the farm level. Poultry Science 94: 1791-1801.
  16. Geier, M. S., L. L. Mikkelsen, V. A. Torok, G. E. Allison, G. C. Olnood, M. Boulianne, R. J. Hughes, and M. Choct. 2010. Comparison of Alternatives to In-feed Antimicrobials for the Prevention of Clinical Necrotic Enteritis. Journal of Applied Microbiology 109:1329-1338.
  17. George, B. A., C. L. Quarles, and D. J. Fagerberg. 1982. Virginiamycin Effects on Controlling Necrotic Enteritis Infection in Chickens. Poultry Science 61:447-450.
  18. Hatheway, C. L. 1990. Toxigenic Clostridia. Clinical Microbiology Reviews 3:66-98.
  19. Heier, B. T., A. Lovland, K. B. Soleim, M. Kaldhusdal, and J. Jarp. 2001. A Field Study of Naturally Occurring Specific Antibodies against Clostridium perfringens Alpha Toxin in Norwegian Broiler Flocks. Avian Diseases 45:724-732.
  20. Heikinheimo, A., M. Lindstrom, and H. Korkeala. 2004. Enumeration and Isolation of cpe-Positive Clostridium perfringens Spores from Feces. Journal of Clinical Microbiology 42:3992-3997.
  21. Helmboldt, C. F., and E. S. Bryant. 1971. The Pathology of Necrotic Enteritis in Domestic Fowl. Avian Diseases 15:775-780.
  22. Hickey, C.S., and Johnson, M.G. 1981. Effects of pH Shifts, Bile Salts, and Glucose on Sporulation of Clostridium perfringens NTCT 8798. Applied and Environmental Microbiology 41:124-129.
  23. Hofacre, C. L., T. Beacorn, S. Collett, and G. Mathis. 2003. Using Competitive Exclusion, Mannan-Oligosaccharide and Other Intestinal Products to Control Necrotic Enteritis. Journal of Applied Poultry Research 12:60-64.
  24. Immerseel, F. V., J. De Buck, F. Pasmans, G. Huyghebaert, F. Haesebrouck, and R. Ducatelle. 2004. Clostridium perfringens in Poultry: an Emerging Threat for Animal and Public Health. Avian Pathology 33:537-549.
  25. Jackson, M. E., D. M. Anderson, H. Y. Hsiao, G. Mathis, and D. W. Fodge. 2003. Beneficial Effect of B-Mannanase Feed Enzyme on Performance of Chicks Challenged with Eimeria and Clostridium perfringens. Avian Diseases 47:759-763.
  26. Jia, W., B. A. Slominski, H. L. Bruce, G. Blank, G. Crow, and O. Jones. 2009. Effects of Diet Type and Enzyme Addition on Growth Performance and Gut Health of Broiler Chickens During Subclinical Clostridium perfringens Poultry Science 88:132-140.
  27. Kaldhusdal, M., C. Schneitz, M. Hofshagen, and E. Skjerve. 2001. Reduced Incidence of Clostridium perfringens-Associated Lesions and Improved Performance in Broiler Chickens Treated with Normal Intestinal Bacteria from Adult Fowl. Avian Diseases 45:149-156.
  28. Klasing, K. C. 1998. Nutritional Modulation of Resistance to Infectious Diseases. Poultry Science 77:1119-1125.
  29. Knarreborg, A., M. A. Simon, R. M. Engberg, B. B. Jensen, and G. W. Tannock. 2002. Effects of Dietary Fat Source and Subtherapeutic Levels of Antibiotic on the Bacterial Community in the Ileum of Broiler Chickens at Various Ages. Applied and Environmental Microbiology 68:5918-5924.
  30. Labbe, R. G. 1991. Clostridium perfringens. Journal of the Association of Official Analytical Chemists 74:711-714.
  31. Langhout, D. J., J. B. Schutte, P. Van Leeuwen, J. Wiebenga, and S. Tamminga. 1999. Effect of Dietary High- and Low-methylated Citrus Pectin on the Activity of the Ileal Microflora and Morphology of the Small Intestinal Wall of Broiler Chicks. British Poultry Science 40:340-347.
  32. Lindstrom, M., A. Heikinheimo, P. Lahti, and H. Korkeala. 2011. Novel Insights into the Epidemiology of Clostridium perfringens Type A Food Poisoning. Food Microbiology 28:192-198.
  33. Long, J.R., Pettit, J.R., and Barnum, D.A. 1974. Necrotic Enteritis in Broiler Chickens II. Pathology and Proposed Pathogenesis. Canadian Journal of Comparative Medicine 38: 467-474.
  34. Long, J. R., and R. B. Truscott. 1976. Necrotic Enteritis in Broiler Chickens III. Reproduction of the Disease. Canadian Journal of Comparative Medicine 40:53-59.
  35. Lovland, A., and M. Kaldhusdal. 1999. Liver Lesions Seen at Slaughter as an Indicator of Necrotic Enteritis in Broiler Flocks. FEMS Immunology and Medical Microbiology 24:345-351.
  36. McDevitt, R. M., J. D. Brooker, T. Acamovic, and N. H. C. Sparks. 2006. Necrotic Enteritis; A Continuing Challenge for the Poultry Industry. World’s Poultry Science Journal 62:221-247.
  37. McDonel, J. L. 1986. Clostridium perfringens Toxins (type A, B, C, D, E). Pharmacology and Therapeutics 10:617-655.
  38. Mikkelsen, L. L., J. K. Vidanarachchi, G. C. Olnood, Y. M. Bao, P. H. Selle, and M. Choct. 2009. Effect of Potassium Diformate on Growth Performance and Gut Microbiota in Broiler Chickens Challenged with Necrotic Enteritis. British Poultry Science 50:66-75.
  39. Mitsch, P., K. Zitterl-Eglseer, B. Kohler, C. Gabler, R. Losa, and I. Zimpernik. 2004. The Effect of Two Different Blends of Essential Oil Components on the Proliferation of Clostridium perfringens in the Intestines of Broiler Chickens. Poultry Science 83:669-675.
  40. Muhammed, S. I., S. M. Morrison, and W. L. Boyd. 1975. Nutritional Requirements for Growth and Sporulation of Clostridium perfringens. Journal of Applied Bacteriology 38:245-253.
  41. Murray, P. R., K. S. Rosenthal, and M. A. Pfaller. 2009. Medical Microbiology. 6th ed. Elsevier Health Sciences, Philadelphia, PA, USA.
  42. Palliyeguru, M. W. C. D., S. P. Rose, and A. M. Mackenzie. 2010. Effect of Dietary Protein Concentrates on the Incidence of Subclinical Necrotic Enteritis and Growth Performance of Broiler Chickens. Poultry Science 89:34-43.
  43. Paredes-Sabja, D., Torres, J.A., Setlow, P., and Sarker, M.R. 2008. Clostridium perfringens Spore Germination: Characterization of Germinants and their Receptors. Journal of Bacteriology 190:1190-1201.
  44. Parish, W. E. 1961. Necrotic Enteritis in the Fowl (Gallus Gallus Domesticus). I. Histopathology of the Disease and Isolation of a Strain of Clostridium welchii. Journal of Comparative Pathology 71:377-393.
  45. Parish, W. E. 1961. Necrotic Enteritis in the Fowl. II. Examination of the Causal Clostridium welchii. Journal of Comparative Pathology 71:394-404.
  46. Parish, W. E. 1961. Necrotic Enteritis in the Fowl. III. The Experimental Disease. Journal of Comparative Pathology 71:405-414.
  47. Pedersen, K., L. Bjerrum, B. Nauerby, and M. Madsen. 2003. Experimental Infections with Rifampicin-resistant Clostridium perfringens Strains in Broiler Chickens Using Isolator Facilities. Avian Pathology 32:403-411.
  48. Pedersen, K., L. Bjerrum, O. Heuer, D. Wong, and B. Nauerby. 2007. Reproducible Infection Model for Clostridium perfringens in Broiler Chickens. Avian Diseases 52:34-39.
  49. Prescott, J. F., R. Sivendra, and D. A. Barnum. 1978. The Use of Bacitracin in the Prevention and Treatment of Experimentally-induced Necrotic Enteritis in the Chicken. Canadian Veterinary Journal 19:181-183.
  50. Rehman, H., W. A. Awad, I. Lindner, M. Hess, and J. Zentek. 2006. Clostridium perfringens Alpha Toxin Affects Electrophysiological Properties of Isolated Jejunal Mucosa of Laying Hens. Poultry Science 85:1298-1302.
  51. Riddell, C., and X. Kong. 1992. The Influence of Diet on Necrotic Enteritis. Avian Diseases 36:499-503.
  52. Shakouri, M. D., P. A. Iji, L. L. Mikkelsen, and A. J. Cowieson. 2008. Intestinal Function and Gut Microflora of Broiler Chickens as Influenced by Cereal Grains and Microbial Enzyme Supplementation. Journal of Animal Physiology and Animal Nutrition 93:647-658.
  53. Shane, S. M., J. E. Gyimah, K. S. Harrington, and T. G. Snider. 1985. Etiology and Pathogenesis of Necrotic Enteritis. Veterinary Research Communications 9:269-287.
  54. Takeda, T., T. Fukata, T. Miyamoto, K. Sasai, E. Baba, and A. Arakawa. 1995. The Effects of Dietary Lactose and Rye on Cecal Colonization of Clostridium perfringens in Chicks. Avian Diseases 39:375-381.
  55. Tschirdewahn, B., S. Notermans, K. Wernars, and F. Untermann. 1991. The Presence of Enterotoxigenic Clostridium perfringens Strains in Faeces of Various Animals. International Journal of Food Microbiology 14:175-178.
  56. Wati, T., Ghosh, T., Syed, B., and S. Haldar. 2015. Comparative efficacy of a phytogenic feed additive and an antibiotic growth promoter on production performance, caecal microbial population and humoral immune response of broiler chickens inoculated with enteric pathogens. Animal Nutrition 1(2015): 213-219.
  57. Williams, R.B. 2005. Intercurrent Coccidiosis and Necrotic Enteritis of Chickens: Rational, Integrated Disease Management by Maintenance of Gut Integrity. Avian pathology 34(3):159-180.
  58. Williams, R. B., R. N. Marshall, R. M. La Regione, and J. Catchpole. 2003. A New Method for the Experimental Production of Necrotic Enteritis and its Use for Studies on the Relationships Between Necrotic Enteritis, Coccidiosis and Anticoccidial Vaccination of Chickens. Parasitology Research 90:19-26.
  59. Wise, M. G., and G. R. Siragusa. 2005. Quantitative Detection of Clostridium perfringens in the Broiler Fowl Gastrointestinal Tract by Real-Time PCR. Applied and Environmental Microbiology 71:3911-3916.
  60. Wiseman, R.W., Bushnell, O.A., and Rosengerg, M.M. 1956. Effects of Rations on the pH and Microflora in Selected Regions of the Intestinal Tract of Chickens. Poultry Science 35:126-132.
  61. Yegani, M., and D. R. Korver. 2008. Factors Affecting Intestinal Health in Poultry. Poultry Science 87:2052-2063.

 

 




How phytomolecules support antibiotic reduction in pig production

swine schmidtkord

by  Merideth Parke, Regional Technical Manager, EW Nutrition

To contain and reverse antimicrobial resistance, consumers and government regulators expect changes in pork production with the clear goal to reduce antibiotic use. For healthy, profitable pig production with simultaneous antibiotic reduction, a holistic strategy is required: refocusing human attitudes and habits, optimal pig health and welfare, and applying potential antibiotic alternatives.

Corn is often contaminated with Aspergillus fungi that can produce poisonous mycotoxins

Pig producers need to manage pathogenic pressure while reducing antibiotics

Intensive pig production has stress points associated with essential husbandry procedures such as weaning, health interventions, and dietary modifications. Stress is widely accepted to have a negative impact on immune system effectiveness, enhancing opportunities for pathogenic bacteria to invade at a local or systemic level. The gastrointestinal and respiratory systems are highly susceptible to developing disease as a result of these combined factors. Interventions such as antibiotics are commonly implemented to reduce the impact of pathogens and manage pig health. Processes that minimize the number of pathogens in the environment are the foundation for a successful antibiotic reduction plan. The challenge is to smartly combine strategies to keep the gastrointestinal and respiratory tract intact and robust.

Phytomolecules, the specific active defense compounds found in plants, have been identified as capable of enhancing pig health through antimicrobial (Cimanga et al., 2002, Franz et al., 2010), antioxidative (Katalinic et al., 2006, Damjanovic-Vratnica et al., 2007, Lee et al., 2011), digestion-stimulating and immune-supportive functions. As many thousands of phytomolecules exist,  laboratory research has focused on identifying those with the capability of microbial management, facilitating the end goal of reducing the reliance on antibiotics for pig health and welfare and the production of safe pork (Zhai et al., 2018).

Which roles can phytomolecules play in reducing antibiotics?

The gastrointestinal tract benefits from applying phytomolecules such as capsaicin, carvacrol, and cinnamaldehyde, as they:

  • support a balanced and stable biome,
  • prevent dysbiosis, maintain tight junction integrity (Liu et al., 2018),
  • increase secretion of digestive enzymes, and
  • enhance gut contractility (Zhai et al., 2018).

Pigs most susceptible and in need of phytomolecule gastrointestinal supportive actions are piglets at weaning and pigs of all ages undergoing stress, pathogen challenges, and/or dietary changes.

Porcine respiratory disease is a complex multifactorial disorder. It frequently requires antibiotics to manage infection pressure and clinical disease to maintain pig health, welfare, and production performance. Causal pathogens may be transmitted by direct contact between pigs in saliva (Murase et al., 2018) or bioaerosols (LeBel et al., 2019), via the nasal or oral cavities (inhalation directly into the airways and lungs), or via an unhealthy gut. Phytomolecules such as carvacrol and cinnamaldehyde have antimicrobial properties. Hence, they may help contain respiratory pathogens in their natural habitat (the upper respiratory tract) or during transit through the oronasal cavity and gastrointestinal tract (Swildens et al., 2004, Lee et al., 2001).

In addition to supporting the gastrointestinal and respiratory systems, phytomolecules such as menthol and 1,8-cineole have been shown to enhance the physical and adaptive immune systems in multiple species (Brown et al., 2017, Barbour et al., 2013). When applied via drinking water, adherence to the oronasal mucosa facilitates the inhalation of the active phytomolecule compounds into the respiratory tract. There, they act as mucolytics, muscle relaxants, and enhancers of the mucociliary clearance mechanism (Başer and Buchbauer, 2020). Phytomolecules have also been documented to positively influence the adaptive immune system, promoting both humoral and cell-mediated immune responses (Awaad et al., 2010, Gopi et al., 2014, Serafino et al., 2008).

How phytomolecules feature in the holistic approach to antibiotic reduction

Antibiotic reduction programs positively enact social responsibility by reducing the risk to farmworkers of exposure to antimicrobial-resistant bacteria. They also help maintain or increase efficiency in safe pork production – pork with minimal risk of antibiotic residues.

Implementation of a successful health program with reduced antibiotic use will require:

  • application of strict internal and external biosecurity processes;
  • evaluation and monitoring of AMR bacteria;
  • partnerships with specialist nutritionists to target a lifetime healthy gut biome; and
  • phytomolecule-assisted health management (Figure 1).

Figure 1: The role of phytomolecules within EW Nutrition’s holistic Antibiotic Reduction program

 

A combination of in vitro and in vivo studies provides evidence that specific phytomolecules can support both enteric and respiratory systems through biome stabilisation and pathogen management (Bajabai et al., 2020). Antimicrobial activity of thymol, carvacrol, and cinnamaldehyde has been reported against respiratory pathogens including S. suis, A. pleuropneumoniae, and H. parasuis (LeBel et al., 2019); multi-drug resistant and ESBL bacteria (Bozin et al., 2006); enteric pathogens including E. coli, Salmonella enteritidis, Salmonella cholerasuis, and Salmonella typhimurium (Penalver et al., 2005); Clostridium spp., E. coli spp., Brachyspira hyodysenteriae (Vande Maelle et al., 2015); and Lawsonia intracellularis (Draskovic et al., 2018). These results have shown phytomolecules to be effective antimicrobial alternatives for incorporation into holistic pig health programs.

Additionally, the inclusion of phytomolecules into pig production systems also enhances production performance by reducing the negative impact of stress on the pig and increasing the positive effects on gut health and nutrient utilization (Franz et al., 2010). Phytomolecules that directly impact digestive actions include capsaicin, which optimizes the production of digestive enzymes and increases serotonin for gut contraction maintenance and improved digesta mixing (Zhai et al., 2018). Cineol’s antioxidative activities provide support during times of stress (Cimanga et al., 2002).

Phytomolecules are key to reducing antibiotics in pig production

The pig industry searches for alternatives to therapeutic, prophylactic, and growth-promoting antibiotic applications to keep available antibiotics effective for longer – and to address the social responsibility of mitigating AMR. This search for ways to produce safe pork has made it clear that only a combination of management and antibiotic alternatives can achieve these aligned goals.

Biosecurity, hygiene, stress reduction, and husbandry and nutritional advances form the foundation for the strategic application of specific phytomolecules (Zeng et al. 2016). Supporting pig production and health, this complete holistic solution (EIP-AGRI) moves the pig industry into a future where antibiotic reduction or removal, with equivalent or increased production of safe pork, becomes a reality.

 


References

Awaard M, Abdel-Alim G, Sayed K, Kawkab, Ahmed1 A, Nada A , Metwalli A, Alkhalaf A. “Immunostimulant effects of essential oils of peppermint and eucalyptus in chickens”. Pakistan Veterinary Journal (2010). 2:61-66. http://www.pvj.com.pk/

Bajagai YS, Alsemgeest J, Moore RJ, Van TTH, Stanley D. “Phytogenic products, used as alternatives to antibiotic growth promoters, modify the intestinal microbiota derived from a range of production systems: an in vitro model”. Applied Microbiology and Biotechnology (2020). 104:10631-10640. https://doi.org/10.1007/s00253-020-10998-x

Barbour EK, Shaib H, Azhar E, Kumosani T, Iyer A, Harakey S, Damanhouri G, Chaudary A, Bragg RR. “Modulation by essential oil of vaccine response and production improvement in chicken challenged with velogenic Newcastle disease virus”. Journal of Applied Microbiology (2013). 115, 1278-1286. https://doi:10.1111/jam.12334

Biljana Damjanovic-Vratnica, Tatjana Dakov, Danijela Sukovic, Jovanka Damjanovic. “Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill” (2011). Czech Journal of Food Science 27(3):277-284. https://www.agriculturejournals.cz/publicFiles/39925.pdf

Bozin B, Mimica-Dukic N, Smin N, Anackov G. “Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils” Journal of Agriculture and Food Chemicals (2006). 54:1822-1828 https://pubs.acs.org/doi/10.1021/jf051922u

Brown SK, Garver WS, Orlando RA. “1,8-cineole: An Underappreciated Anti-inflammatory Therpeutic” Journal of Biomolecular Research &Therapeutics (2017). 6:1 1-6  https://doi: 10.4172/2167-7956.1000154

Cimanga K., Kambu K., Tona L., Apers S., De Bruyne T., Hermans N., Totte J., Pieters L., Vlietinck A.J. “Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo”. Journal of Ethnopharmacology (2002) 79: 213–220. https://doi.org/10.1016/s0378-8741(01)00384-1

Draskovic V, Bosnjak-Neumuller J, Vasiljevic M, Petrujkic B, Aleksic N, Kukolj V, Stanimirovic Z. “Influence of phytogenic feed additive on Lawsonia intracellularis infection in pigs” Preventative Veterinary Medicine (2018). 151: 46-51 https://doi.org/10.1016/j.prevetmed.2018.01.002

European Innovation Partnership Agricultural Productivity and Sustainability (EIP-AGRI). https://ec.europa.eu/eip/agriculture/en/european-innovation-partnership-agricultural

Franz C., Baser KHC, Windisch W. “Essential oils and aromatic plants in animal feeding-a European perspective. A review Flavour”. Flavour and Fragrance Journal (2010) 25:327-40. https://doi.org/10.1002/ffj.1967

Gopi M, Karthik K, Manjunathachar H, Tamilmahan P, Kesavan M, Dashprakash M, Balaraju B, Purushothaman M. “Essential oils as a feed additive in poultry nutrition”. Advances in  Animal and Veterinary Sciences (2014) 1:17.  https://doi.10.14737/journal.aavs/2014.2.1.1.7

Başer, Kemal Hüsnü Can, and Gerhard Buchbauer. Handbook of Essential Oils Science, Technology, and Applications. Boca Raton: CRC Press, 2020.

Hengziao Zhai, Hong Liu, Shikui Wang, Jinlong Wu, Anna-Maria Kluenter. “Potential of essential oils for poultry and pigs.” Animal Nutrition 4 (2018): 179-186.  https://doi.org/10.1016/j.aninu.2018.01.005

Katalinic V., Milos M., Kulisic T., Jukic M. “Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols”. Food Chemistry (2006) 94(4):550-557.  https://doi.org/10.1016/j.foodchem.2004.12.004

LeBel G., Vaillancourt K., Bercier P., Grenier D. “Antibacterial activity against porcine respiratory bacterial pathogens and in vitro biocompatibility of essential oils”. Archives of Microbiology (2019) 201:833-840; https://doi.org/10.1007/s00203-019-01655-7

Lee KG, Shibamoto T. “Antioxidant activities of volatile components isolated from Eucalyptus species”. Journal of the Science of Food and Agriculture (2001). 81:1573-1597. https://doi.org/10.1002/jsfa.980

Liu SD, Song MH, Yun W, Lee JH, Lee CH, Kwak WG Han NS, Kim HB, Cho JH. “Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers” Journal of Animal Physiology and Animal Production (2018) https://doi.org/10.1111/jpn.12944

Murase K, Watanabe T, Arai S, Kim H, Tohya M, Ishida-Kuroki K, Vo T, Nguyen T, Nakagawa I, Osawa R, Nguyen N, Sekizaki T. “Characterization of pig saliva as the major natural habitat of Streptococcus suis by analyzing oral, fecal, vaginal, and environmental microbiota”. PLoS ONE (2019). 14(4). https://doi.org/10.1371/journal.pone.0215983

Nethmap MARAN report 2018. https://www.wur.nl/upload_mm/7/b/0/5e568649-c674-420e-a2ca-acc8ca56f016_Maran%202018.pdf

Penalver P, Huerta B, Borge C, Astorga R, Romero R, Perea A. “Antimicrobial activity of 5 essential oils against origin strains of the Enterobacteriaceae family”. Acta Pathologica Microbiologica, et Immunologica Scandinavica (2005) 113:1-6. AromaticScience, LLC Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family.

Serafino A, Vallebona PS, Adnreola F, Zonfrillo M, Mercuri L, Federici M, Rasi G, Garaci E, Pierimarchi P. “Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response” BioMed Central (2008). 9:17 https//:doi:10.1186/1471-2172-9-17

Swildens B, Stockhofe-Zurwieden N, van der Meulen J, Wisselink HJ, Nielen M. “Intestinal translocation of Streptococcus suis type 2 EF+ in pigs”. Veterinary Microbiology (2004) 103:29-33. https://doi: 10.1016/j.vetmic.2004.06.010

Vande Maele L, Heyndrickx M, Maes D, De Pauw N, Mahu M, Verlinden M, Haesbrouck F, Martel A, Pasmans F, Boyen F. “In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components”. Journal of Veterinary Medical Science (2016). 78(2):325-328.  https://doi.org/10/1292/jvms.15-0341

Zeng Z, Zhang S, Wang H, Piao X. “Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review”. Journal of Animal Science and Biotechnology (2015) 6:7. https://doi.org?10/1186/s40104-015-004-5




Understanding and managing Strep suis in swine: The essentials

shutterstock 281988731

Strep suis causes vast losses in pig production and threatens human health, too. We still rely on antibiotics to control it – but we will have to change tactics to contain antimicrobial resistance.

 

Streptococcus suis is one of the most economically harmful pathogens for the global swine industry. When I started working in pig production 25 years ago, S. suis was already a problem on practically all the farms that I visited. Back then, our understanding of the pathogen and hence our control strategies were rudimentary: in farrowing rooms, we cut piglets’ teeth, used gentian violet spray on their navels, and sometimes applied penicillin lyophilized with iron. For the nursery phase, we only had penicillin or phenoxymethylpenicillin at our disposal – until the first amoxicillin-based premixes arrived, which turned out to be highly effective.

To this day, we control S. suis mainly through oral beta-lactam antibiotics (in feed or water) or injectable solutions, administered to piglets at an early age. However, pig production has evolved dramatically over the past decades, and so has the scientific research on this complex pathogen. Crucially, we now know that the excessive use of antibiotics contributes to the development of antimicrobial resistance.

Recent Australian research has discovered S. suis strains (both in humans and pigs) with a high degree of resistance to macrolides or tetracyclines, strains with intermediate sensitivity to Florfenicol, and others that are developing resistance to penicillin G. Additionally, we now know that S. suis is a zoonotic bacteria that affects not only at-risk farm or slaughterhouse personnel: S. suis is among the leading causes of death from meningitis in countries such as Thailand, China or Vietnam. In light of these threats to human health, we in the swine industry more than ever have a duty to help control this pathogen.

This article first reviews our current state of knowledge about the epidemiology and pathogenesis of Strep suis; it then lays out virulence factors and the role of coinfections. The second part considers the dimensions of a holistic approach to S. suis prevention and control and highlights the central role of intestinal health management.

What we know about S. suis epidemiology and pathogenesis

Practically all farms worldwide have carrier animals, but the percentage of animals colonized “intra-farm” varies between 40 and 80%, depending on several factors such as environmental conditions, hygiene measures, and the virulence of the S. suis strains involved.

How S. suis strains are classified

S. suis strains were once classified into 35 serotypes, according to their different capsular polysaccharides(CPS), theoutermost layer of the bacterial cell. Due to phylogenic and genomic sequencing, some of the old serotypes (20, 22, 26, 32, 33, and 34) are now reclassified, either in other bacterial genera or in other Streptococcus species. This has reduced the total to 29 S. suis serotypes.

Globally, the prevalence of the disease varies between 3% and 30%. The main serotypes affecting pig population are type 2 (28%), 9 (20%), and 3 (16%); differences in the geographical distribution are shown in Figure 1.

Figure 1: Global distribution of S. suis serotypes
Based on different sources, incl. Goyette-Desjardins et al. (2014), Zimmermann et al. (2019), and Gebhart (2019)

In addition to the serotype classification based on CPS antigens, S. suis has also been genetically differentiated into “sequence types” using the MLST (Multi Locus Sequence Typing) technique. The distribution of both porcine and human sequence types is detailed in Figure 2.

Figure 2: S. suis sequence types and their worldwide distribution

How S. suis is transmitted in swine

The main transmission routes are, firstly, the vertical sow-piglet route; the mucosa of the vagina is the first point of contamination. In the farrowing room, respiratory transmission from the sow to the piglets takes place. Horizontal transmission between piglets has also been proven to occur, especially during outbreaks in the post-weaning phase. This form of transmission happens through aerosols, feces, and saliva.

While in humans, the possibility of infection via the digestive tract has been confirmed, there are discussions about this route for swine. De Greeff et al. (2020) argue, based on in vitro and in vivo data, that infection through the digestive tract is associated with specific serotypes. Serotype 9, for example, would have a greater capacity for colonizing the gastrointestinal tract, and from there, the bacteria’s translocation takes place. The same authors point out that, in Western Europe, S. suis serotype 9 has become one of the most prevalent serotypes in recent years.

How S. suis colonization occurs

Although there are still unknown mechanisms in the pathogenesis of the disease, it can be schematically summarized how colonization occurs (Figure 3). From the different infection routes, the pathogen always passes through the mucosa. When S. suis enter the bloodstream, it can lead to a systemic infection, ending in septicemia, meningitis, endocarditis, or pneumonia, or a local infection at the joints level, causing arthritis.

According to Haas and Grenier (2018), different pathogenicity factors intervene in each of the processes. The CPS, for example, are relevant during colonization and the initial progression (indicated by black arrows). Microvesicles released by S. suis cell membranes are more involved in the passage to the bloodstream or, for example, the progression towards local or systemic infection (indicated by white arrows).

 

Figure 3: Pathogenesis of S. suis infection
Source: based on Haas and Grenier (2018)

 

Depending on the host and the immune response, the well-known clinical signs of the disease will occur. Although they may begin in the lactation phase, the highest prevalence of meningitis (the main clinical symptom) usually occurs between the 5th and the 10th week of life, that is, between two and three weeks after weaning.

How to diagnose S. suis infection

Diagnosing S. suis is relatively simple at a clinical level; however, we need to know how to differentiate it from G. parasuis in the case of animals with nervous symptoms. We also need to distinguish S. suis from other pathogens responsible for producing arthritis, such as M. hyosynoviae or the fibrin-producing agent M. hyorhinis.

Laboratory techniques are developing on two fronts. Among molecular techniques, multilocus sequence typing (MLST) is considered the gold standard for serotyping. It is still costly and not yet practicable for large samples at the farm level. In contrast, several types of polymerase chain reaction (PCR) show greater practical applicability. Quantitative PCRs (qPCR) are used for the evaluation of bacterial load, and some PCRs are based on the identification of specific virulence genes.

Due to the relevance of S. suis for human health, more complex techniques are also available, such as the complete sequencing of the bacterial genome. This type of method aims to develop epidemiological analyzes together with the differentiation between virulent and non-virulent S. suis strains. Research is also underway in serology, particularly on evaluating maternal immunity and its interference with the piglet, as well as autogenous vaccines monitoring.

Why S. suis sometimes causes disease: Virulence factors and coinfections

Streptococcus suis is a pathobiont, i.e., a microorganism that belongs to the commensal flora of animals but generates disease under certain conditions. In their daily work on farms, clinical veterinarians, for instance, find that S. suis often colonizes the upper respiratory tract, nasal cavity, and tonsils without causing disease. S. suis pathogenicity is associated with an astounding range of different circumstances or triggering factors; some sources list more than 100 virulence factors. Several factors are considered essential in the development of pathogenesis; others, however, are the subject of ongoing research (cf. Xia et al., 2019, and Segura et al., 2017).

Critical virulence factors

  • One of the most important proteins is the CPS that establishes serotypes. The CPS largely determines the bacteria’s adhesion and colonization behavior. It can modify its thickness depending on the stage: it becomes thinner when adhering to the mucociliary apparatus and thicker when circulating through the bloodstream, protecting the bacteria against possible attacks by immune system cells.
  • Likewise, suis has an adhesin known as Protection Factor H (FHB) that protects it from phagocytosis by macrophages and can also interfere with the complement activation pathways of the immune system.
  • Suilysin is one of the most critical suis‘ protein toxins. This toxin plays a fundamental role in the interaction with host cells (modulating them to facilitate invasion and replication within the host cells) as well as in the inflammatory response.
  • S. suis is a mucosal pathogen and, hence, triggers a mucosal immunity response, mainly by immunoglobulins A (IgA). S. suis has developed proteases capable of destroying both IgA and IgG.
  • Research is still in progress, but both suis serotype 2 and 9 encode the development of adhesion proteins that facilitate mucociliary colonization when salivary glycoproteins are present (these are called antigens 1 and 2).
  • Other than Suilysin, two of the bacteria’s protein components that have been studied in-depth to develop subunit vaccines are the MRP (Muramidase Release Protein) and EF (Extracellular Factor) protein. Whether the expression of these proteins is associated with virulence depends on the serotype.
  • Recent research indicates that greater biofilm production capacity is associated with the more virulent suis strains. The production of biofilm is closely related to the production of fibrinogen, which allows the bacteria to develop resistance to the action of antimicrobials, to colonize tissues, to evade the immune system, etc.

Concomitant factors for S. suis infection

Even though S. suis is a primary pathogen that can cause disease by itself, many factors can exert a direct or indirect influence on whether or not and to which extent disease develops.

Veterinarians and producers are well aware of the influence of environmental and management factors such as temperature variations, poor ventilation together with poor air quality, irritants for the respiratory tract, as well as correct densities for animals’ welfare. Occasionally, depending on the geographical location, S. suis can be considered as a seasonal pathogen, showing a higher prevalence during the coldest months of the year when ventilation is lower or not well-controlled.

At the level of the individual animal, concomitant pathogens, environmental changes, diet changes, previous pathologies, piglet handling problems, etc., all come into play. Younger piglets tend to be more susceptible because of the decrease in maternal immunity or insufficient colostrum intake; diarrhea during the lactation phase also increases disease vulnerability.

Recently, researchers have started to explore the hypothesis that a change in the digestive tract microbiome balance may favor a pathogenic trajectory. Some results indicate that changes in the microbiota around the moment of weaning could indeed trigger disease. I will return to the vital topic of the digestive tract in S. suis pathogenesis below.

The role of coinfections

The virulence of S. suis can increase in the presence of other pathogens, both viral and bacterial. Among the main viruses, key interactants are the PRRS virus, the influenza virus (SIV), as well as Porcine Circovirus (PCV) and Porcine Respiratory Coronavirus (PRCV). At the bacterial level, Bordetella bronchiseptica and Glaesserella parasuis have the most direct interaction with S. suis (Brockmeier, 2020).

There are several mechanisms by which coinfections might increase S. suis virulence: some of them (i.e., B. bronchiseptica and SIV) alter the epithelial barrier, facilitating the translocation of S. suis. Moreover, viruses such as PRRS either cause an alteration in the response of the immune system or destroy relevant immune system cells.

Valentin-Weigand et al. (2020) posit that the influenza virus increases the pathogenic capacity of S. suis so that, for specific strains, the disease can develop even in the absence of the key virulence factor suilysin. This highlights the importance of controlling coinfections for successful S. suis management.

The five pillars of holistic S. suis management in swine

The challenge of managing this problematic pathogen with limited use of antibiotics prompts a review of all strategies within our reach. From birth to slaughterhouse, interventions must be coordinated and cannot work independently.

1. Biosecurity

The principles of biosecurity are easily understood. Yet, across different locations and production systems, farms struggle with consistently executing biosecurity protocols. For the moment, it appears unrealistic to avoid the introduction of new S. suis strains altogether. Also, complete eradication is not feasible with the currently available tools.

Genetic companies and research centers will likely continue to explore how to reduce bacterial colonization in animals, to produce piglets that have no or only minimal S. suis populations. Again, this option is not available for now.

At the farm level, the most promising and feasible approach is to reduce the risk of bacterial transmission, i.e., to optimize internal biosecurity. This extends to controlling both viral and bacterial coinfections. The two major viruses affecting the nursery stage are the PRRS virus and Swine Influenza virus. Bacteria that can contribute to the disintegration of the mucosa, both at the respiratory level and the digestive level, are Atrophic Rhinitis (progressive or not) and digestive pathogens such as E. coli, Rotavirus and Eimeria suis. All possible measures to reduce the prevalence and spread of these co-infectants must be executed to help control S. suis.

2. The pre-weaning period

We need to consider several elements in the first hours after birth that influence the spread of the bacteria in the farrowing rooms:

  • How is the colostrum distribution between the litters and the subsequent distribution of the piglets carried out?
  • How is the “processing” of the piglets carried out after farrowing: iron administration, wound management, and tail docking?
  • Are we taking any measure to prevent iatrogenic transmission of pathogens through needle exchange?

Until today, it is common practice to administer systemic (in-feed) or local (vaginally applied) antibiotics during the pre-weaning phase, albeit with partial or inconsistent successes in terms of reducing infection pressure. Notably, during the pre-weaning phase, the development of the piglet’s microbiota begins to take shape, and the systematic and prophylactic application of antibiotics in young animals can reduce bacterial diversity of the microbiome (Correa-Fiz et al., 2019). This, in turn, leads to a proliferation of bacteria with a pathogenic profile that could detrimentally influence subsequent pathology.

piglets suckling

S. suis is an ultra-early colonizer; piglets can get infected already at birth

3. The post-weaning period

The post-weaning period undoubtedly constitutes the most critical stage of the piglets’ first weeks of life. In addition to social and nutritional stress, piglets are exposed to new pathogens. While maternal immunity is decreasing, piglets have not developed innate immunity yet; they are now most susceptible to the horizontal transmission of diseases. Hence, S. suis prevention during this phase center on measures that improve piglet quality. Key parameters include:

  • Do we have a correct and homogeneous weight/age ratio at weaning?
  • What is the level of anorexia in piglets? Do we practice suitable corrective measures to encourage the consumption of post-weaning feed?
  • How are we feeding them? What medications do they routinely receive?
  • How are housing facilities set up concerning density, environment, and hygiene?

Again, gut health is critical: Ferrando and Schultsz (2016) suggest that the status of the piglet’s weaning gastrointestinal tract centrally influences the subsequent development of the disease. Their research supports the idea that some specific S. suis serotypes can develop their pathogenesis from the digestive tract, just as in human medicine. While in humans, this digestive route is associated with the consumption of raw or insufficiently processed pork, in swine, the most susceptible moments are sudden changes in diet. The transition from milk to solid feed, in particular, leads to an increase in alpha-glucans that favor bacteria proliferation. Likewise, an increase in susceptibility occurs when the integrity of the intestinal wall is lost, for example, due to viral and bacterial coinfections.

4. Treatments and vaccination

Since weaning is such a difficult phase for the life of the piglet, it is a common practice on farms across the world to include one or several antibiotics in the post-weaning phase. Sometimes, when the legal framework allows, producers use a systematic antibiotic (i.e., beta-lactams or tetracyclines) and another one with a digestive profile (e.g., pharmacological doses of ZnO, trimethoprim, sulfa drugs and derivatives).

While antibiotics, for the most part, effectively prevent infection in the post-weaning phase, they can have adverse effects on the digestive tract. According to Zeineldin, Aldrige, and Lowe (2019), continued antibiotics use:

  • might increase the susceptibility to other infections because of the imbalance of the microbiome,
  • the immune system might be weakened, together with an alteration in metabolism,
  • and it fosters a greater accumulation of bacteria that are resistant to antibiotics.

The effectiveness of curative antibiotics treatments varies considerably. In any case, early detection is critical; affected animals need to be isolated and provided with a comfortable environment. Therapeutic parenteral antibiotics are best combined with high-dose corticosteroids. Some sick animals are unable to stand or walk. As a complementary measure, it is recommended, where possible, to help them ingest some feed and water.

Much research attention is focused on finding suitable vaccines to control the disease. This is a challenging task: S. suis shows high genetic diversity, making the identification of common proteins difficult, and is protected against antibody binding by a sugar-based envelope. The research group around Mariela Segura and Marcelo Gottschalk, for example, is working on a subunit vaccine strategy that addresses both dimensions. Recently, Arenas et al. (2019) identified infection-site specific patterns of S. suis gene expression, which could serve as a target for future vaccines.

The arrival of a universal, affordable S. suis vaccine is still a distant hope, though. Inactivated vaccines generally offer low levels of antibodies at the mucosal level and would need some adjuvant to increase them. A multiple injection protocol will not work from a commercial and practical point of view. On the other hand, live attenuated vaccines risk re-developing virulence with potentially drastic effects on human health. To complicate the topic of vaccination further, there is a controversy regarding the time of application and what animals we should vaccinate – sows, piglets, both?

Today, though with variable results, the alternative to scarce commercial vaccines is autogenous vaccines. These are based on the suspected serotype(s) present on a particular farm. This strategy hinges on the difficult procedure of isolating the strain from the meninges, spleen, or joints of the animals. If this step is successful, a laboratory can then develop the autogenous vaccine. Immunization occurs mainly in piglets, but occasionally some sows are vaccinated during the lactation period.

5. Hygiene

Just as for any other pathogen, hygiene management is critical. The infection pressure can be lowered through simple steps, such as washing the breeders before they enter the farrowing room. It is, or it should be, standard practice to maximize hygiene in the processing of piglets, avoiding injuries or pinching of the gums during teeth cutting, as well as disinfecting the umbilical area.

We know that S. suis is usually very sensitive to most disinfectants, but that is can form a biofilm that allows it to withstand hostile conditions. Physical or chemical methods to eliminate biofilm-formation are thus vital for combatting S. suis effectively.

 

Figure 4: The 5 pillars of S. suis control and prevention

S. suis control and prevention: The future lies in the gut

There is no ideal solution for totally controlling S. suis yet: autogenous vaccines are only partially effective, and since we cannot continue to administer antibiotics systematically, it is necessary to look for alternatives. Pending the arrival of a universal vaccine, the most promising efforts focus on the gastrointestinal tract.

Microbiome balance to keep S. suis in check

The gastrointestinal tract is not only the site where nutrient absorption takes place.  The gut is the largest immune system organ in the body and most exposed to different antigens; therefore, what happens at the digestive level has a considerable influence on the immune system, locally and systemically.

The microbiome can be defined as the set of autochthonous bacteria that reside in the digestive system of animals. This group of bacteria is continually evolving and changes at critical moments in the life of animals. Simply put, a healthy microbiome is one that has a high bacterial diversity in the digestive tract (alpha diversity). The diversity between animals, on the other hand, should be low (beta diversity). A healthy microbiota implies the absence of dysbiosis and pathogens. Finally, one wants to promote the presence of bacteria that can produce substances with a bactericidal effect, such as short-chain fatty acids or bacteriocins.

Can we influence the microbiome to have fewer S. suis problems? Research by Wells, Aragon, and Bessems (2019) compared microbiota samples of the palatine tonsils from healthy and infected animals. They found that animals that would later develop the disease showed less diversity and, in particular, a diminished presence of the genus Moxarella. Importantly, they found that these differences in the microbiome’s composition of animals that later developed the disease were noticeable before weaning and at least two weeks before the outbreak occurred.

The same authors investigated in more depth, which bacteria in the microbiome were able to maintain homeostasis at the digestive level, finding that this was mostly the case for the genera Actinobacillus, Streptocuccus, and Moraxella. Moreover, they found that Prevotellacea and Rhotia produce antibacterial substances against S. suis.

Nutrition can impact the microbiome through targeted ingredients

We have to think about the microbiome of locations other than the digestive system as well. As we previously saw, the bacteria are transmitted through the mucosal route in the vagina, through the respiratory route, and there are recent studies that consider saliva as a leading source of infection in oral transmission.

This research contributes insights into how we might approach S. suis management through nutritional strategies. The question for nutritionists is, can you formulate feed that reduces the availability of S. suis’ favorite nutrients? S. suis appears to develop best when the feed contains large quantities of carbohydrates or starches. Other nutritional factors include the feed’s buffering capacity and the stomach pH of the piglets.

 

 

In times of antimicrobial resistance, additives are crucial for S. suis control and prevention

Gut health and nutrition approaches come together in the area of additives: targeted gut health-enhancing additives to feed or water will become a cornerstone of S. suis control. What we want to see in such products are molecules or substances that are capable of limiting, inhibiting, or slowing down the growth of S. suis by altering the membrane or interfering with the energy mechanisms of the bacteria.

There are already several products on the market with different active ingredients, such as phytomolecules, medium-chain fatty acids, organic acids, prebiotics, probiotics, etc. Soon, those products or combinations of them will be a part of our strategy for controlling this pathogen of such importance to our industry.

By Technical Team, EW Nutrition

References

Arenas, Jesús, Ruth Bossers-De Vries, José Harders-Westerveen, Herma Buys, Lisette M. F. Ruuls-Van Stalle, Norbert Stockhofe-Zurwieden, Edoardo Zaccaria, et al. “In Vivo Transcriptomes of Streptococcus Suis Reveal Genes Required for Niche-Specific Adaptation and Pathogenesis.” Virulence 10, no. 1 (2019): 334–51. https://doi.org/10.1080/21505594.2019.1599669.

Brockmeier, Susan L. “Appendix F – The role of concurrent infections in predisposing to Streptococcus suis and other swine diseases: Proceeding from the 4th International Workshop on S. suis.” Pathogens 9, no. 5 (2020): 374. https://doi.org/10.3390/pathogens9050374.

Correa-Fiz, Florencia, José Maurício Gonçalves Dos Santos, Francesc Illas, and Virginia Aragon. “Antimicrobial Removal on Piglets Promotes Health and Higher Bacterial Diversity in the Nasal Microbiota.” Scientific Reports 9, no. 1 (2019): Article number: 6545. https://doi.org/10.1038/s41598-019-43022-y.

De Greeff, Astrid, Xiaonan Guan, Francesc Molist, Manon Houben, Erik van Engelen, Ton Jacobs, Constance Schultsz et al. “Appendix A – Streptococcus suis serotype 9 infection: Novel animal models and diagnostic tools: Proceeding from the 4th International Workshop on S. suis.” Pathogens 9, no. 5 (2020): 374. https://doi.org/10.3390/pathogens9050374.

Ferrando, M. Laura, Peter Van Baarlen, Germano Orrù, Rosaria Piga, Roger S. Bongers, Michiel Wels, Astrid De Greeff, Hilde E. Smith, and Jerry M. Wells. “Carbohydrate Availability Regulates Virulence Gene Expression in Streptococcus Suis.” PLoS ONE 9, no. 3 (2014). https://doi.org/10.1371/journal.pone.0089334.

Ferrando, Maria Laura, and Constance Schultsz. “A Hypothetical Model of Host-Pathogen Interaction OfStreptococcus Suisin the Gastro-Intestinal Tract.” Gut Microbes 7, no. 2 (2016): 154–62. https://doi.org/10.1080/19490976.2016.1144008.

Gebhart, Connie. “Cracking the Streptococcus Suis Code.” Pijoan Lecture. Lecture presented at the University of Minnesota Allen D. Leman Swine Conference, 2019. https://drive.google.com/file/d/1-E5tgFbteuPcDnMquOj_YhSKHYlaCqwO/view.

Goyette-Desjardins, Guillaume, Jean-Philippe Auger, Jianguo Xu, Mariela Segura, and Marcelo Gottschalk. “Streptococcus Suis, an Important Pig Pathogen and Emerging Zoonotic Agent—an Update on the Worldwide Distribution Based on Serotyping and Sequence Typing.” Emerging Microbes & Infections 3, no. 1 (2014): 1–20. https://doi.org/10.1038/emi.2014.45.

Haas, B., and D. Grenier. “Understanding the Virulence of Streptococcus Suis : A Veterinary, Medical, and Economic Challenge.” Médecine et Maladies Infectieuses 48, no. 3 (2018): 159–66. https://doi.org/10.1016/j.medmal.2017.10.001.

Murase, Kazunori, Takayasu Watanabe, Sakura Arai, Hyunjung Kim, Mari Tohya, Kasumi Ishida-Kuroki, Tấn Hùng Võ, et al. “Characterization of Pig Saliva as the Major Natural Habitat of Streptococcus Suis by Analyzing Oral, Fecal, Vaginal, and Environmental Microbiota.” Plos One 14, no. 4 (2019). https://doi.org/10.1371/journal.pone.0215983.

O’Dea, Mark A., Tanya Laird, Rebecca Abraham, David Jordan, Kittitat Lugsomya, Laura Fitt, Marcelo Gottschalk, Alec Truswell, and Sam Abraham. “Examination of Australian Streptococcus Suis Isolates from Clinically Affected Pigs in a Global Context and the Genomic Characterisation of ST1 as a Predictor of Virulence.” Veterinary Microbiology 226 (2018): 31–40. https://doi.org/10.1016/j.vetmic.2018.10.010.

Segura, Mariela, Nahuel Fittipaldi, Cynthia Calzas, and Marcelo Gottschalk. “Critical Streptococcus Suis Virulence Factors: Are They All Really Critical?” Trends in Microbiology 25, no. 7 (2017): 585–99. https://doi.org/10.1016/j.tim.2017.02.005.

Segura, Mariela, Virginia Aragon, Susan Brockmeier, Connie Gebhart, Astrid Greeff, Anusak Kerdsin, Mark O’Dea, et al. “Update on Streptococcus Suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. Suis.” Pathogens 9, no. 5 (2020): 374. https://doi.org/10.3390/pathogens9050374.

Tenenbaum, Tobias, Tauseef M Asmat, Maren Seitz, Horst Schroten, and Christian Schwerk. “Biological Activities of Suilysin: Role InStreptococcus Suispathogenesis.” Future Microbiology 11, no. 7 (2016): 941–54. https://doi.org/10.2217/fmb-2016-0028.

Valentin-Weigand, Peter, Fandan Meng, Jie Tong, Désirée Vötsch, Ju-Yi Peng, Xuehui Cai, Maren Willenborg et al. “Appendix G – Viral coinfection replaces effects of suilysin on adherence and invasion of Streptococcus suis into respiratory epithelial cells grown under air–liquid interface conditions: Proceeding from the 4th International Workshop on S. suis.Pathogens 9, no. 5 (2020): 374. https://doi.org/10.3390/pathogens9050374.

Wells, Jerry, Virginia Aragon, and Paul Bessems. “Report on the deep analysis of the microbiota composition in healthy and S. suis-diseased piglets.” European Commission Program for Innovative Global Prevention of Streptococcus suis. Ref. Ares(2019)6305977, 2019. https://cordis.europa.eu/project/id/727966/results

Xia, Xiaojing, Wanhai Qin, Huili Zhu, Xin Wang, Jinqing Jiang, and Jianhe Hu. “How Streptococcus Suis Serotype 2 Attempts to Avoid Attack by Host Immune Defenses.” Journal of Microbiology, Immunology and Infection 52, no. 4 (2019): 516–25. https://doi.org/10.1016/j.jmii.2019.03.003.

Zeineldin, Mohamed, Brian Aldridge, and James Lowe. “Antimicrobial Effects on Swine Gastrointestinal Microbiota and Their Accompanying Antibiotic Resistome.” Frontiers in Microbiology 10 (2019). https://doi.org/10.3389/fmicb.2019.01035.

Zimmerman, Jeffrey J., Locke A. Karriker, Alejandro Ramirez, Kent J. Schwartz, Gregory W. Stevenson, and Jianqiang Zhang. Diseases of Swine. 11th ed. Hoboken, NJ: Wiley-Blackwell, 2019.




5 principles to consider when designing biosecurity programmes

piglets fotolia 208173745 l

Biosecurity is the foundation for all disease prevention programs and all the more important in antibiotic reduction scenarios. It includes the combination of all measures taken to reduce the risk of introduction and spread of diseases and is based on the prevention of and protection against infectious agents. Its fundament is the knowledge of disease transmission processes.

 

biosecurity egg immunoglobulins bolster piglets’ immune systemAlthough biosecurity is considered the cheapest and most effective intervention in antibiotic reduction programmes, compliance is often low and difficult. 

The application of consistently high standards of biosecurity can substantially contribute to the reduction of antimicrobial resistance, not only by preventing the introduction of resistance genes into the farm but also by lowering the need to use antimicrobials.

Lower use of antimicrobials with higher biosecurity

Studies and assessments such as those done by (Laanen, et al., 2013), (Gelaude, et al., 2014), (Postma, et al., 2016), (Collineau, et al., 2017) and (Collineau, et al., 2017a) relate a high farm biosecurity or improvements in biosecurity with lower antimicrobial use. Laanen, Postma, and Collineau studied the profile of swine farmers in different European countries, finding a relation between a high level of internal biosecurity, efficient control of infectious diseases, and a reduced need for antimicrobials.

Others such as Gelaude and Collineau studied the effect of interventions. The former examined Belgian broiler farms, finding a reduction of antimicrobial use by almost 30% when biosecurity and other farm issues were improved within a year. The latter studied swine farms located in Belgium, France, Germany and Sweden, in which antimicrobial use was also reduced in 47% across all farms and observed that farms with the higher biosecurity compliance and who also took a holistic approach, making other changes (e.g. management and nutrition), achieved a higher reduction in antimicrobial use.

Biosecurity interventions pay off

Of course, the interventions necessary to achieve an increased level of biosecurity carry some costs. However, the interventions, especially if taken with other measures such as improved management of new-born animals and nutritional improvements, also improve productivity. The same studies which report that biosecurity improvements decrease antimicrobial use also report an improvement in animal performance. In the case of broilers, Laanen (2013) found a reduction of 0.5 percentual points in mortality and one point in FCR; and Collineau (2017) obtained an improvement during both the pre-weaning and the fattening period of 0.7 and 0.9 percentual points, respectively.

Implementation, application and execution

Although biosecurity is considered the cheapest and most effective intervention in antibiotic reduction programmes, compliance is often low and difficult. The implementation, application, and execution of any biosecurity programme involve adopting a set of attitudes and behaviours to reduce the risk of entrance and spread of disease in all activities involving animal production or animal care. Measures should not be constraints but part of a process aimed at improving the health of animals and people, and a piece of the holistic approach to reduce antibiotics and improve performance.

Designing effective biosecurity programmes: Consider these 5 principles

When designing or evaluating biosecurity programmes, we can identify 5 principles that need to be applied. These principles set the ground for considering and evaluating biosecurity interventions:

1. SeparationKnow your enemy, but don’t keep it close

It is vital to have a good separation between high and low-risk animals or areas on the farm, as well as dirty (general traffic) and clean (internal movements) areas on the farm. This avoids not only the entrance but the spread of disease, as possible sources of infection (e.g. wild birds) cannot reach the sensitive population.

2. Reduction: Weaken your enemy, so it doesn’t spread

The goal of the biosecurity measures is to keep infection pressure beneath the level which allows the natural immunity of the animals to cope with the infections, lowering the pressure of infection e.g. by an effective cleaning and disinfection programme, by the reduction of the stocking density, and by changing footwear when entering a production house.

3. Focus: Hunt the elephant in the room, shoo the butterflies

In each production unit, some pathogens can be identified as of high economic importance. For each of these, it is necessary to understand the likely routes of introduction into a farm and how it can spread within it. Taking into account that not all disease transmission routes are equally important, the design of the biosecurity programme should focus first on high-risk transmission routes, and only subsequently on the lower-risk transmission routes.

4. RepetitionIncreasing the probability of infection

In addition to the probability of pathogen transmission via the different transmission routes, the frequency of occurrence of the transmission route is also highly significant when evaluating a risk (Alarcon, et al., 2013). When designing biosecurity programmes, risky actions such as veterinary visits, if repeated regularly must be considered with a higher risk.

5. Scaling: In the multitude, it is easy to disguise

The risks related to disease introduction and spread are much more important in big; more animals may be infected and maintain the infection cycle, also large flocks/herds increase the infection pressure and increase the risk by contact with external elements such as feed, visitors, etc.

Can we still improve our biosecurity?

Almost 100% of poultry and swine operations already have a nominal biosecurity programme, but not in all cases is it effective or completely effective. BioCheck UGent, a standardised biosecurity questionnaire applied worldwide, shows an average of 65% and 68% of conformity, from more than 1000 broiler and 2000 swine farms between respectively; opportunities to improve can be found in farms globally, and they pay off.

The bottom line

Biosecurity is necessary for disease prevention in any profitable animal production system. To make effective plans, these 5 principles should be applied to choose the right interventions that prevent the entrance and spread of disease. However, maintaining a successful production unit requires a holistic approach in which other aspects of biosecurity need to also be taken seriously, as well as actions to improve in other areas such as management, health and nutrition.

 

Authors: Marisabel Caballero, Global Technical Manager Poultry – EW Nutrition

References available under request.
Article published in Pig Progress.




Respiratory Challenges: Breathing Space for Antibiotic Reduction?

Clinical signs of respiratory disease in chickens include coughing sneezing and rales 1

Sub-therapeutic doses of antibiotic growth promoters (AGPs) were used for more than 50 years in poultry production to achieve performance targets – until growing concerns arose regarding antibiotic resistance (Kabir, 2009) and decreasing efficacy of antibiotics for medical purposes (Dibner & Richards, 2005).

Isolates of ESBL-producing E.coli from animals, farmworkers, and the environment were found to have identical multidrug resistance patterns (A. Nuangmek et al., 2018). There is also evidence that AMR strains of microorganisms spread from farm animal to animal workers and beyond. Global AMR fatalities are increasing and might reach 10 million by 2050 (Mulders et al., 2010, Trung et al., 2017, Huijbers et al., 2014).

In light of this, certain AGPs have already been banned, and there is a strong possibility of future restrictions on their use worldwide. Bans are effective: the MARAN report 2018 shows that lower antibiotics usage following the EU ban on AGPs has reduced resistant E.coli in broilers. Another positive consideration is the market opportunities that exist for antibiotic residue-free food.

However, the key element that poultry producers need to get right for antibiotic reduction to be successful is respiratory health management. This article looks at why respiratory health is a particular challenge – and how phytogenic solutions can help.

A closer look at the chickens’ respiratory system

The respiratory tract is equipped with a functional mucociliary apparatus consisting of a protective mucous layer, airway surface liquid layer, and cilia on the surface of the ciliated cells. This apparatus produces mucus, which traps the inhaled particles and pathogens and propels them out of the airways. This mechanism, called the mucociliary clearance, is the primary innate defense mechanism of the respiratory system.

High stocking density combined with stressful environmental factors can negatively influence birds’ immune systems (Heckert et al., 2002; Muniz et al., 2006), making them more susceptible to respiratory disease. When a bird suffers from respiratory disease, which is nowadays usually complicated by a co-infection or secondary bacterial infection, there is an excess production of mucus that results in ciliostasis and, therefore, in an impaired mucociliary clearance. The excess mucus in the tract obstructs the airways by forming plagues and plugs, resulting in dyspnea (hypoxia) and allowing the invasive bacteria to adhere and colonize the respiratory system.

The build-up of mucus in the respiratory tract severely reduces oxygen intake, causing breathlessness, reduced feed intake, and a drop in the birds’ energy levels, which negatively impacts weight gain and egg production. Respiratory problems can result from infection with bacteria, viruses, and fungi, or exposure to allergens. The resultant irritation and inflammation of the respiratory tract leads to sneezing, wheezing, and coughing – and, therefore, the infection rapidly spreads within the flock.

 

Clinical signs of respiratory disease in chickens heat stressRelatively high stocking density is the norm in poultry production

Low or no antibiotics: how to manage respiratory disease?

Unsurprisingly, respiratory diseases in poultry are a major cause of mortality and economic loss in the poultry industry. For Complicated Chronic Respiratory Disease (CCRD), for instance, although the clinical manifestations are usually slow to develop, Mycoplasma gallisepticum (MG), in combination with E. coli, can cause severe airsacculitis. Beside feed and egg production reduction, these problems are of high economic significance since respiratory tract lesions can cause high morbidity, high mortality, and significant carcass condemnation and downgrading.

Producers need to pre-empt the spread of respiratory pathogens, react quickly to alleviate respiratory distress and maintain the mucociliary apparatus’ functionality. Traditionally, treatment options are based on antiviral, anti-inflammatory, and antibiotic drugs. Can the poultry industry limit losses from respiratory infections without excessive recourse to antibiotics?

Indeed, a sudden reduction in antibiotic usage comes with a risk of impaired performance, increased mortality, and impaired animal health and welfare. The impact has been quantified as a 5% loss in broiler meat production per sq. meter (Gaucher et al., 2015). Effective antibiotics reduction requires a combination of innovative products and suitable consultancy services to manage poultry gut health, nutrition, flock management, biosecurity, and, particularly, respiratory health.

Non-antibiotic alternatives to control diseases and promote broiler growth, such as organic acids (Vieira et al., 2008), probiotics (Mountzouris et al., 2010), prebiotics (Patterson & Burkholder, 2003), and essential oils (Basmacioğlu Malayoğlu et al., 2010) have been the subject of much research in recent years.

Phytogenic solutions: proven efficacy

Essential oils, which are extracted from plant parts, such as flowers, buds, seeds, leaves, twigs, bark, wood, fruits, and roots, have a particularly well-established track record of medicinal applications. Efforts have centered on phytomolecules, the biologically active secondary metabolites that account for the properties of essential oils (Hernández et al., 2004; Jafari et al., 2011).

Studying these properties is challenging: essential oils are very complex natural mixtures of compounds whose chemical compositions and concentrations are variable. For example, the concentrations of the two predominant phytogenic components of thyme essential oils, thymol and carvacrol, have been reported to range from as low as 3% to 60% of the whole essential oil (Lawrence and Reynolds, 1984).

Another well-researched example is eucalyptus oil. The essential oils of eucalyptus species show antibacterial, anti-inflammatory, diaphoretic, antiseptic, analgesic effects (Cimanga et al., 2002) and antioxidant properties (Lee and Shibamoto, 2001; Damjanović Vratnica et al., 2011). The oils are mainly composed of terpenes and terpene derivatives in addition to some other non-terpene components (Edris, 2007). The principal constituent found in eucalyptus is 1,8-cineole (eucalyptol); however, other chemotypes such as α-phellandrene, ρ-cymene, γ-terpinene, ethanone, and spathulenol, among others, have been documented (Akin et al., 2010).

eucalyptol respiratory challengesClose-up of eucalyptus leaf oil glands and
the molecular structure of eucalyptol
C10H18O (red = oxygen; dark grey = carbon; light grey = hydrogen)

Antimicrobial activity

In modern intensive broiler production, bacterial diseases such as salmonellosis, colibacillosis, mycoplasmosis, or clostridia pose serious problems for the respiratory system and other areas. Analyses of the antibacterial properties of essential oils have been carried out by multiple research units (Ouwehand et al., 2010; Pilau et al., 2011; Solorzano- Santos and Miranda-Novales, 2012; Mahboubi et al., 2013; Nazzaro et al., 2013; Petrova et al., 2013).

Phenols, alcohols, ketones, and aldehydes are clearly associated with antibacterial activity; the exact mechanisms of action, however, are not yet fully understood (Nazzaro et al., 2013). Essential oils’ antimicrobial activity is not attributable to a unique mechanism but instead results from a cascade of reactions involving the entire bacterial cell (Nazzaro et al., 2013). However, it is accepted that antimicrobial activity depends on the lipophilic character of the components.

The components permeate the cell membranes and mitochondria of the microorganisms and inhibit, among others, the membrane-bound electron flow and thus the energy metabolism. This leads to a collapse of the proton pump and draining of the ATP (adenosine triphosphate) pool. High concentrations may also lead to lysis of the cell membranes and denaturation of cytoplasmic proteins (Nazzaro et al., 2013; Gopi et al., 2014).

According to current knowledge, lavender, thyme, and eucalyptus oil, as well as the phytomolecules they contain, show enhanced effects when combined with other essential oils or synthetic antibiotics (Sadlon and Lamson, 2010; Bassole and Juliani, 2012; Sienkiewicz, 2012; de Rapper et al., 2013; Zengin and Baysal, 2014).

Minimum inhibitory concentration (MIC) of some essential oil components against microorganisms in vitro

Table Minimum Inhibitory Concentration Mic Of Some Essential Oil Components

Immune system boost I: improved production of antibodies

Some essential oils were found to influence the avian immune system positively, since they promote the production of immunoglobulins, enhance the lymphocytic activity, and boost interferon-γ release (Awaad et al., 2010; Faramarzi et al., 2013; Gopi et al., 2014; Krishan and Narang, 2014). Placha et al. (2014) showed that the addition of 0.5g of thyme oil per kg of feed significantly increased IgA levels.

Awaad et al. (2010) experimented on birds vaccinated with the inactivated H5N2 avian influenza vaccine. The experiment revealed that adding eucalyptus and peppermint essential oils to the water at a rate of 0.25 ml per liter resulted in an enhanced cell-mediated and humoral immune response.

Saleh et al. (2014), who applied thyme and ginger oils in quantities of 100mg and 200mg per kg of feed, respectively, observed an improvement in chickens’ immunological blood profile through increased antibody production. Rehman et al. (2013) stated that the use of herbal products containing eucalyptus oil and menthol in broilers showed consistently higher antibody titers against NDV (Newcastle disease virus), compared to untreated broilers.

Immune system boost II: better vaccine responses and anti-inflammatory effects

Essential oils are also used as immunomodulators during periods when birds are exposed to stress, acting protectively and regeneratively. Importantly, the oils alleviate the stress caused by vaccination (Barbour et al., 2011; Faramarzi et al., 2013; Gopi et al., 2014). The study by Kongkathip et al. (2010) confirmed the antiviral activity of turmeric essential oil.

In recent years studies have been carried out on the use of essential oils in conjunction with vaccination programs, including those against infectious bronchitis (IB), Newcastle disease, and Gumboro disease. The results of the experiments show that essential oils promote the production of antibodies, thus enhancing the efficacy of vaccination (Awaad et al., 2010; Barbour et al., 2010; Barbour et al., 2011; Faramarzi et al., 2013).

Essential oils contain compounds that are known to possess strong anti-inflammatory properties, mainly terpenoids, and flavonoids, which suppress the metabolism of inflammatory prostaglandins (Krishan and Narang, 2014). Also, other compounds found in essential oils have anti-inflammatory, pain-relieving, or edema-reducing properties, for example, linalool from lavender oil, or 1,8-cineole, the main component of eucalyptus oil (Peana et al., 2003).

Immune system boost III: antioxidant effects and radical scavenging

An imbalance in the rate of production of free radicals or removal by the antioxidant defense mechanisms leads to a phenomenon referred to as oxidative stress. A mixture of Oregano (carvacrol, cinnamaldehyde, and capsicum oleoresin) was found to beneficially affect the intestinal microflora, absorption, digestion, weight gain and also to have an antioxidant effect on chickens (Bassett, 2000).

Zeng et al. (2015) indicated the positive effect of essential oils on the production of digestive secretions and nutrient absorption. They reduce pathogenic stress in the gut, exert antioxidant properties, and reinforce the animal’s immune status.

Inside the cell, essential oils can serve as powerful scavenger preventing mutations and oxidation (Bakkali et al., 2008). Studies have demonstrated the concentration-dependent free radical scavenging ability of oils from eucalyptus species (Kaur et al., 2010; Marzoug et al., 2011; Olayinka et al., 2012). Some authors attribute the strong antioxidant capacity of essential oils to their phenolic constituents and synergistic effect between tannins, rutin, thymol, and carvacrol, and probably 1, 8-cineole. Moderate DPPH radical scavenging activity reported by Edris(2007), El-Moein et al. (2012), and Kaur et al. (2011).

Vázquez et al. (2012) have demonstrated the potential of the phenolic compounds in eucalyptus bark as a source of antioxidant compounds. The study showed that eucalyptus had ferric reducing antioxidant power in the ranges 0.91 to 2.58 g gallic acid equivalent (GAE) per 100 g oven-dried bark and 4.70 to 11.96 mmol ascorbic acid equivalent (AAE) per 100 g oven-dried bark, respectively (see also Shahwar et al., 2012). Moreover, Eyles et al. (2004) were able to show superoxide dismutase (SOD)-like activity for different compounds and fractions isolated from wood extracts.

Last but not least: positive effects on the respiratory system

In poultry production houses, especially in summer, high temperatures and low humidity increase the amount of air dust. Under such conditions, respiratory tract disorders in broiler chickens, including the deposition of particulates, become more frequent and more severe.

Clinical signs of respiratory disease in chickens include coughing, sneezing, and rales

Clinical signs of respiratory disease in chickens include coughing, sneezing, and rales

Thyme oil, thanks to the phytomolecules thymol and carvacrol, supports the treatment of respiratory disorders. These substances smooth tightened muscles and stimulate the respiratory system. An additional advantage lies in their expectorant and spasmolytic properties (Edris, 2007).

These properties are also seen in essential oils such as eucalyptus and peppermint, which contain eucalyptol and menthol. They thin out the mucus and facilitate its removal from the airways. As a result, the airways are cleared and breathing during inflammation becomes easier (Durmic and Blache, 2012).

Another positive effect of the terpenoid compounds used in commercial preparations for poultry is that they disinfect the bronchi, preventing respiratory infections (Awaad et al., 2010; Barbour et al., 2011; Mahboubi et al., 2013). Barbour and Danker (2005) reported that the essential oils of eucalyptus and peppermint improved the homogeneity of immune responses and performance in MG/H9N2-infected broilers.

Grippozon: the phytogenic solution for respiratory health

Grippozon is a liquid composition with a high content of essential oils, which are combined to systematically prevent and ease respiratory diseases. The formulation is derived from the research on essential oils’ effectiveness against respiratory pathogens that are common in animal farming. Grippozon exhibits a synergistic action of all its components to optimally support animal health. It contains a high concentration of active components; both their quantity and quality are guaranteed to deliver results.

Application of Grippozon

Grippozon application can be flexibly adapted to most common housing systems. It is fully water-soluble for use in the drinking line and it is also possible to nebulize a diluted solution in air.

The dose recommendation in drinking water usually amounts to 100ml to 200ml per 1000 liters of drinking water (Grippozon administration has not been reported to affect water consumption). The active substances in Grippozon adhere to mouth mucosa and become volatile in the breathing air later on. Therefore Grippozon can enter the respiratory system indirectly as well. The volatile compounds also spread into the whole barn air and, thus, indirectly via breathing into the respiratory system (and farmers notice the smell of essential oils when Grippozon is applied through in the waterline)

Grippozon can also be used as a spray at a rate of 200ml/10 liters of water for 2000 birds, twice daily on 2-3 days a week. This produces a very effective nebulization effect and offers faster respiratory relief to birds.

Grippozon is an impactful tool for managing respiratory problems. Thanks to its effective mucolytic and relaxant activity, Grippozon gives symptomatic relief to the birds during high-stress periods of respiratory diseases. Mucus in the trachea works as media for the proliferation of bacteria and viruses, so by thinning the mucus, Grippozon slows down the proliferation of bacteria and the spread of disease. Grippozon helps in improving air quality and air intake. It can also be used to stimulate the immune response during vaccination.

Authors:
Ruturaj Patil – Product Manager Phytogenic Liquids
Kowsigaraj Palanisamy – Global Validation Trial Manager

References available on request




Do we have the tools to reduce antibiotics in swine production?

SOW iStock 000000850516 web horiz. 1

The global swine industry is going through unprecedented challenges. On the one hand, the threat of the African Swine Fever virus is global, despite the fact it hasn’t arrived in all markets. The virus is today alive among the wild boars in the Polish and Belgian forests. Every day it keeps gaining a few more meters to the border, threatening the German swine industry, one of the largest in the European Union.

If this happens, we might be seeing important changes to the pork supply chain on the meat market worldwide – in Europe in addition to current issues in the USA meat plants. The profitability of swine businesses depends in many ways on the export capacity of large corporations based in Germany, Spain, Denmark, etc.

On the other hand, the presence of COVID-19 in most countries is changing human behavior, meat consumption at home, and the way we look at the future. Perhaps a virus overload via the news, some “fake news” conveying wrong messages on what’s coming, and suddenly we feel the future will never be the same.

The future of the swine industry

At least for the swine industry, the future will indeed never be exactly the same. We will be facing different challenges. Some of these will be structural, such as the issue of decreased manpower and how to substitute manpower by machines, through the implementation of Precision Livestock Farming, for instance.

We are also facing important health challenges to our animals: not just ASF, but also new and more aggressive PRRS strains, among other pathogens. Our sows´ production capacity is increasing annually, yet in some cases 25% of the new-born piglets are lost from birth to market. Increasingly, we may start to see increased levels of mortality not only in the nursery but in fattening pigs and sows as well.

It is becoming clearer all the time: the future of the global swine industry lies in producing more pigs with reduced antibiotics. To stay the course, we need to take further action and implement corrective measures.

Why we should remove antibiotics in pig production

Pressure from stakeholders and regulators

There is, and there will be, increasing pressure from many stakeholders worldwide to work toward pig production with reduced or no antibiotics. Meat suppliers, slaughterhouses and processors, governments at different levels, and, of course, the European Union – all are demanding reductions in the level of antibiotics in livestock production.

There is also an increasing awareness at the global societal level regarding antimicrobial resistance related to antibiotic usage in farming production. Consumer pressure will grow exponentially as the terrible COVID-19 experience will be “digested” by the global population.

Pressure to accede to the pork market

There is yet another important reason to start working in that direction: the global swine meat market. Today, China’s pork meat shortage is opening the market. Now any producer could potentially sell meat, either to China or to any other country. We are starting to see moves from companies in the USA or Brazil banning the use of Ractopamine in their operations because they want to get access to the ractopamine-free market (Europe & Asia, over 70% of the global population).

According to M. Pierdon (AASV 2020 Proceedings), there will be two types of markets: the “Niche ABFree” and the “Commodity ABFree”. Companies will have to analyse what their future is on the meat market. Not all the producers may be willing to enter this new phase, but for sure many will try.

 

Strategies for antibiotic reduction

In Europe, the time has arrived. Zinc oxide will be banned in June 2021 and there is now more than a trend in production with less or no antibiotic use. In some cases, there is a need; in others, this is simply profitable.

Challenges to antibiotic reduction

Producing pigs completely without antibiotics is not easy, and not affordable for all. Initially we may have to give up some performance parameters in order to achieve the balance between what we want and what we can achieve in animal performance. But the time will arrive when these two objectives will converge; there is no alternative.

To that end, we will have to include in our pig production strategy all the available tools and technologies: genetic selection, immunization against some key pathogens, environmental control (mandatory but often forgotten), early detection of diseases, etc.

In this new era we are entering, nutrition and feed additives will play a key role. It will be crucial to find solutions targeting the microbiome’s stabilization and diversification, creating and maintaining healthy farms and achieving all the performance parameters.

Do we have the tools for antibiotic reduction?

Even today there are companies able to produce completely antibiotic-free pigs – proof that yes, the tools are already in place.

Nevertheless, for most producers, the answer to – Can we produce without antibiotics? is most likely “probably not”. This will require a holistic approach, given the specific case of piglets.

The microbiome of the piglet is strongly influenced by birth and the subsequent weeks. What, then, are the elements that will be part of this new game that comprises a new approach?

    • The colostrum intake & the management of the piglets
    • Antibiotic usage and its influence on the gut
    • The piglets’ microbiome and its evolution during the periweaning period
    • The weaning process, appetite, and water intake
    • Zinc oxide removal and its influence on the microbiome
    • The immune system and the relationship with the GIT status
    • Inflammation and its modulation at the gut level
    • The health status and the effect on the concomitant infections: which ones are key and which ones are secondary pathogens
    • The all-important biosecurity, management, and hygiene

To summarize: there is no one tool, but rather a holistic approach to face this new challenge that the swine industry is facing nowadays. The answer is not a silver bullet, but a journey that we all must undertake.

 

Available in Spanish here.