EW Nutrition acquires BIOSTABIL product line from dsm-firmenich

Biostabil Header

VISBEK, 5 March 2024 – EW Nutrition, a global provider of animal nutrition solutions, announced today that it has acquired the BIOMIN BIOSTABIL product line from dsm-firmenich. The deal gives EW Nutrition ownership over an established and successful line of silage inoculants.

“The agreement we have concluded gives us a solid foothold in a sector where we are currently developing a more substantial presence” says Jan Vanbrabant, CEO of EW Nutrition. “EW Nutrition continues to expand strategically, enriching its portfolio with market-leading solutions, developed in-house or through acquisitions. The Biomin Biostabil line joins an innovative portfolio that has been growing tremendously in the last three years with the launch of Ventar D and Pretect D, our Feed Quality and Pigment lines acquired in 2021, and yet another momentous global launch coming up shortly.” This solid, well-proven line of silage inoculants, says Vanbrabant, will be an important addition to customers of EW Nutrition’s On-Farm Solutions business around the world.

The transaction was closed on March 1, 2024. Under the services agreement concluded, all customers will be actively supported over the next months, while the asset, brand, and go-to-market will be transitioned to EW Nutrition in the coming period.

The financial details of the sale remain confidential.

 




Mycotoxins in layer and breeder feed impact hens, eggs, hatchery, and chicks

White Chickens Farm

By Marisabel Caballero, Global Technical Manager Poultry

As the planet’s climate experiences changes, new patterns affect the microbial communities colonizing crops. Recently, several areas of the planet have experienced extreme temperatures, drought, changes in the humid/dry cycles, and an increase in atmospheric carbon dioxide (1,2). As a response, the fungi affecting the crops have shifted their geographical distribution, and with this, the pattern of mycotoxin occurrence also changed. For instance, in Europe, we are looking at higher frequencies and levels of Aflatoxins (AF), Ochratoxins (OT), and Fumonisins (FUM) than ten or even five years ago (2-4).

This affects animal production, as mycotoxin challenges show increased frequency, quantity, and variety. Mainly long-living animals, such as laying hens and breeders, can have a higher risk. Moreover, mycotoxins can also be carried over to the eggs, potentially risking human health in the case of layers (table eggs) and in the case of breeder hens, hatchery performance and day-old chick (DOC) quality.

Laying hens and breeders: carryover of mycotoxins into eggs

Most mycotoxins are absorbed in the proximal part of the gastrointestinal tract (Table 1). This absorption can be high, as in the case of aflatoxins (~90%), but also very limited, as in the case of fumonisins (<1%), with a significant portion of unabsorbed toxins remaining within the lumen of the gastrointestinal tract (5).

Once mycotoxins are ingested, detoxification and excretion processes are started by the body, and at the same time, organ damage ensues. The detoxification of mycotoxins is mainly carried out by the liver (6), and their accumulation happens primarily in the liver and kidneys. However, accumulation in other tissues, such as the reproductive organs and muscles, has also been found (7-9). The detoxification process’ objective is the final excretion of the toxins, which occurs through urine, feces, and bile; often, the toxins can also reach the eggs (7-20).

Table 1: mycotoxin absorption rates for poultry and their carry-over rate into eggs

Mycotoxin Main absorption sites Absorption rate in poultry Carry-over rate into eggs
Aflatoxins Duodenum, jejunum ≈90% ≈0.55%
DON Duodenum, jejunum ≈20% ≈0.001%
Fumonisins Duodenum, jejunum ≈1% ≈0.001%
Ochratoxin Jejunum ≈40% ≈0.15%
T-2 Duodenum, jejunum ≈20% ≈0.10%
Zearalenone Small & large intestine ≈10% ≈0.30%

(Adapted from 5, 7-17, 19-21)

Table 1 shows carry-over rates of mycotoxins into eggs, resulting from diverse studies (7-10, 14, 16, 19). However, the same studies indicate that results can vary broadly due to different factors, as reviewed by Völkel and collaborators (26). This variability is related to the amount and source of contamination, way of application, period, and the possible co-occurrence of various mycotoxins or several metabolites. Other factors to consider are animal-related, such as species, breed, sex, age group, production level, and health status. Environmental and management factors can play a role in carry-over rates, and finally, detection limits and analytical procedures also influence these results. In summary, highly varying carry-over has been demonstrated, and the risk needs to be considered when animals are exposed.

Mycotoxins in breeder’s feed impact hatchery performance and day-old chick quality

When hens are exposed to mycotoxins, their effects on the intestine, liver, and kidney decrease egg production and quality (10, 14, 27), and, in the case of breeders, consequently, affect hatchery performance, DOC production, and DOC quality (28-30). The main effects of mycotoxins, when we speak about DOC production, are exerted in the gastrointestinal tract, the liver, and the kidneys, affecting embryos and young chicks:

  • Intestine and kidneys: Mycotoxins harm the intestinal epithelium and have nephrotoxic effects, affecting calcium and vitamin D3 absorption and metabolism, necessary for eggshell quality (31). Thin and fragile shells can increase embryonic mortality, lower embryonic weight gain, and hinder hatchability (32).
  • Liver: The liver plays a central role in egg production as it is responsible for vitamin D3 metabolism, the production of nutrient transporters, and the synthesis of the lipids that make up the yolk. Thus, when liver function is impaired, the internal and external quality of the egg declines, which affects DOC production (31-34).
  • Embryo and young chicks: Studies (33-38) have found how mycotoxins affect the embryos. In general, there are two possibilities: the direct one, when the mycotoxin is transferred into the egg, and the indirect one, when the mycotoxin impacts egg quality and, therefore, leads to disease or death of the embryo. The result is a higher embryonic mortality or lower DOC quality. These, among others, result from the lower transfer of antioxidants and antibodies from the hen, low viability of the chick’s immune cells, and higher bacterial contamination. A lower relative weight of the bursa of Fabricio and the thymus is often found.

Qreshi’s team (29) studied the effects on the progeny of broiler breeders consuming feed highly contaminated with AFB1, finding suppression in antibody production and macrophage function in chicks after ten days. Similar results were found by other researchers (36, 37) evaluating the effects of AF and OTA as single and combined contamination. When both mycotoxins are present in the feed, the effect on hatchability and DOC quality are synergistic.

Due to mycotoxin contamination, the reproduction and immune response are impaired, resulting in decreased DOC production and increased early chick mortality, as they are more susceptible to bacterial and viral infections.

Mycotoxins impair table egg production and quality

Studies (22-24) have found mycotoxin contamination in commercial table eggs. A meta-analysis of mycotoxins’ concentration based on 11 published papers was completed recently (22): counting with data from 9509 samples, the meta-analysis reveals an overall presence of mycotoxins in 30% of the samples, being Beauvericin in the first place, followed by DON as well as AF and OTA in third and fourth place, respectively. The risk for humans depends on the intake of contaminated foods in terms of amount and frequency (25), and so far, it has not been estimated in most parts of the world.

Natural contamination in laying hens: a case report

Giancarlo Bozzo’s team (39) reported and published a veterinary case regarding natural mycotoxin contamination in commercial egg production: up to week 47 of age, production parameters were on top of the genetic standards. However, a drop in egg production started at around week 47, and at week 50, egg production was only 68% (figure 1).

Figure
Figure 1: production of laying hens fed naturally contaminated feed with AFB1 and OTA
The house with the reduced performance received feed with linseed. In other houses of the same complex, which did not include linseed in the feed, production was unaffected. Therefore, this raw material was considered a possible cause of the issue. Linseed was removed from the formula, and three weeks after (53 weeks of age), egg production was at 84%. Afterward, linseed got back into the formulation, and the laying rate dropped again to 70% (week 56), this time accompanied by a significant increase in mortality.

Samples were collected at week 56, and AFB1 and OTA were detected in feed and the kidneys and livers of the hens consuming it (table 2). While the levels in the feed were not considered high risk, evidence from necropsy and histopathology suggested either a higher or a prolonged exposure; a synergistic effect of both mycotoxins on hen’s health and productivity can be inferred.

Table 2: mycotoxin analysis results for feed and organs

HPLC analysis results in samples of:
toxin Feed 1
(n=5)
Feed 2
(n=5)
Kidney

(n=10)

Liver

(n=10)

OTA 1.1 ± 0.1 ppb 31 ± 3 ppb 47 ± 3 ppb 24 ± 2 ppb
AFB1 ND 5.6 ± 0.3 ppb 1.4 ± 0.3 ppb 3.6 ± 0.4 ppb

The liver and kidneys were enlarged and showed signs of damage. Furthermore, urate crystals in the peritoneum and the abdominal air sac were observed, indicating renal failure. This limited the excretion of both toxins in the urine, increasing their half-life in the organism and enhancing the effects in target organs, contributing to the synergistic effect observed.

After using mycotoxin-free certified linseed, the problem receded. Though this is the best option to keep animals healthy and productive, it may not be practical in the long term due to the ubiquitous nature of the toxins and the cost and availability constraints of feed raw materials. Moreover, the mycotoxin levels present in the feed were relatively low and fell under recommended guidelines. For these reasons, in-feed toxin mitigation solutions must also be considered to reduce exposure for production animals.

In-feed intervention mitigates the effects of intermittent exposure to multiple mycotoxins

EW Nutrition conducted a study with Hy-Line W-36 layer-breeders intercalating three 10-day cycles of feed with 100ppb AFB1 + 100ppb OTA, with two 21-day cycles of non-challenged feed. An in-feed intervention (Solis Max 2.0, displayed as IFI) containing bentonite, yeast cell wall components, and a mixture of phytogenic components mitigated all effects.

Table 3: experimental groups and mycotoxin challenge

Treatment Group 100 ppb AFB1+ 100 ppb OTA IFI (2 kg/ton)
T-1 Control (C)
T-2 C+IFI X
T-3 Challenge (Ch) X
T-4 Ch+IFI X X

Trial design:

A total of 576 hens (18 replicates per diet, 8 hens each) and 58 roosters were randomly assigned to four diets at 28 weeks of age, as shown in Table 3. The 72-day experimental period included alternating 10-day challenge and 21-day non-challenge intervals (Figure 2). During the challenge intervals, the breeders in T-3 and T-4 were fed the mycotoxin-contaminated feed with and without the IFI.

FigureFigure 2: trial timeline showing challenge and non-challenge intervals and days of data collection and sampling.

Mitigated effects on egg production and egg quality

The challenge decreased overall egg production (Figure 3), egg mass, and shell thickness (Table 4). The first challenge interval did not affect production, but days later, from the first non-challenge period, all parameters were lower for the challenged group.

FigureDifferent letters indicate significant differences (p<0.05). Statistical tendencies (p<0.1) are indicated by (*).

Figure 3: Egg production of hens intermittently challenged with AFB1 and OTA, with and without in-feed Solis Max

The adverse effects on productivity and egg quality started after the first challenged feed was withdrawn and persisted through the following intervals until the end of the experiment. Similar effects in chronic mycotoxin challenges have been previously found (37, 39).

Table 4: Average egg quality parameters of hens intermittently challenged with AFB1+OTA, with and without an in-feed intervention (IFI)

Group Eggshell strength (N) Eggshell thickness (mm) Haugh Units
Control 21,02a 0,3661ab 70,88
IFI 21,16a 0,3702a 71,68
Challenge 20,05b 0,3630b   70,07*
Ch+IFI 21,06a 0,3698a 71,06

Different letters indicate significant differences (p<0.05). Statistical tendencies (p<0.1) are indicated by (*).

Mitigated effects on the progeny in incubation trials

Three incubation trials were performed: after the first challenge and non-challenge interval and at the end of the trial period after the third challenge interval. A significant decrease in fertility and hatchability was observed for the challenged group in all incubation trials. As mycotoxins affect egg quality (22-24) and can be transferred to the eggs (10, 14, 27), the effects were also shown in the case of hatchability and offspring performance. Fertility was affected from the first challenge interval onwards, continuing to be low for the challenge group until the end of the trial. However, the hatchability of fertile eggs dropped after the withdrawal of the contaminated feed and showed the lowest value during the third challenge interval.

The in-feed supplementation of Solis Max 2.0 (IFI) resulted in the consistent recovery of egg production and egg quality throughout the whole experimental period, achieving the same levels of productivity as the non-challenged control.

Figure
Letters indicate significant differences (p<0.05). Statistical tendencies (p<0.1), indicated by (*).

Figure 4: Hatchery parameters of eggs from breeders intermittently challenged with AFB1 and OTA, with and without an in-feed intervention (IFI).

Results in hatch of fertile can be related to egg quality, as the thickness of the eggshell influences the egg’s moisture loss and exchange with the environment during the incubation period. Thinner eggshells lead to higher embryo mortality (31, 32). The group having the challenge with Solis Max showed the same performance as the non-challenged control regarding hatchery performance.

Day-old chick weight was not affected. However, weight gain and mortality after ten days were hindered for the chicks from breeders taking the mycotoxin-contaminated feed (Table 5).

Table 5: Average day- and 10-day-old chick parameters from hens intermittently challenged with AFB1+OTA, with and without an in-feed intervention (IFI)

Parameter Control Challenge Ch + IFI
DOC body weight (g) 36,67 36,24 36,80
10-day body weight (g) 76,30a 75,94b 79,50a
10-day mortality (%) 0,94 1,26 0,97

Letters indicate significant differences (p<0.05). Statistical tendencies (p<0.1) indicated by (*)

At the end of the experiment, oxidative stress biomarkers were measured in the blood serum of 15 hens per treatment, showing significantly lower GPx, and SOD (figure 5) in the challenged group, which indicates a depletion of the mechanisms to fight oxidative stress (40), the hens taking the in-feed product did not show this depletion.

FigureFigure 5: Antioxidants in blood serum, glutathione peroxidase (GPx), and superoxide dismutase (SOD) from breeders intermittently challenged with AFB1 and OTA, with and without an in-feed intervention (IFI).

Intermittent exposure to AFB1 and OTA negatively affected layer breeder productivity, egg quality, and hatchability and promoted oxidative stress in the birds. Intermittent mycotoxin challenges may affect animals even after the contamination is withdrawn. In-feed interventions showed effectiveness in mitigating these effects.

Climate changes bring new mycotoxin challenges – the right in-feed solutions can help

Today’s mycotoxin scenario shows increased frequency, quantity, and variety. Mainly long-living animals, such as laying hens and breeders, can be at more risk. Additionally, the contamination can be carried over to the eggs, potentially risking human health in the case of table eggs and hatchery performance and DOC quality in the case of breeders.

From case reports, we learn the consequences of real challenges and struggles in commercial production; from scientific trials based on possible commercial situations, we realize the advantages of interventions designed to tackle those challenges.

References

  1. Kos, Jovana, Mislav Anić, Bojana Radić, Manuela Zadravec, Elizabet Janić Hajnal, and Jelka Pleadin. “Climate Change—a Global Threat Resulting in Increasing Mycotoxin Occurrence.” Foods 12, no. 14 (July 14, 2023): 2704. https://doi.org/10.3390/foods12142704.
  2. Zingales, Veronica, Mercedes Taroncher, Piera Anna Martino, María-José Ruiz, and Francesca Caloni. “Climate Change and Effects on Molds and Mycotoxins.” Toxins 14, no. 7 (June 30, 2022): 445. https://doi.org/10.3390/toxins14070445.
  3. Loi, Martina, Antonio F. Logrieco, Tünde Pusztahelyi, Éva Leiter, László Hornok, and István Pócsi. “Advanced Mycotoxin Control and Decontamination Techniques in View of an Increased Aflatoxin Risk in Europe Due to Climate Change.” Frontiers in Microbiology 13 (January 10, 2023). https://doi.org/10.3389/fmicb.2022.1085891.
  4. Medina, Ángel, Jesús M González-Jartín, and María J Sainz. “Impact of Global Warming on Mycotoxins.” Current Opinion in Food Science 18 (December 2017): 76–81. https://doi.org/10.1016/j.cofs.2017.11.009.
  5. Grenier, Bertrand, and Todd Applegate. “Modulation of Intestinal Functions Following Mycotoxin Ingestion: Meta-Analysis of Published Experiments in Animals.” Toxins 5, no. 2 (February 21, 2013): 396–430. https://doi.org/10.3390/toxins5020396.
  6. Filazi, Ayhan, Begum Yurdakok-Dikmen, Ozgur Kuzukiran, and Ufuk Tansel Sireli. “Mycotoxins in Poultry.” Poultry Science, February 15, 2017. https://doi.org/10.5772/66302.
  7. Amirkhizi, Behzad, Seyed Rafie Arefhosseini, Masoud Ansarin, and Mahboob Nemati. “Aflatoxin B1in Eggs and Chicken Livers by Dispersive Liquid–Liquid Microextraction and HPLC.” Food Additives &amp; Contaminants: Part B, August 27, 2015, 1–5. https://doi.org/10.1080/19393210.2015.1067649.
  8. Emmanuel K, Tangni, Van Pamel Els, Huybrechts Bart, Delezie Evelyne, Van Hoeck Els, and Daeseleire Els. “Carry-over of Some Fusarium Mycotoxins in Tissues and Eggs of Chickens Fed Experimentally Mycotoxin-Contaminated Diets.” Food and Chemical Toxicology 145 (November 2020): 111715. https://doi.org/10.1016/j.fct.2020.111715.
  9. Ebrahem, Mohammad, Susanne Kersten, Hana Valenta, Gerhard Breves, and Sven Dänicke. “Residues of Deoxynivalenol (Don) and Its Metabolite de-Epoxy-Don in Eggs, Plasma and Bile of Laying Hens of Different Genetic Backgrounds.” Archives of Animal Nutrition 68, no. 5 (August 20, 2014): 412–22. https://doi.org/10.1080/1745039x.2014.949029.
  10. Salwa, A. Aly, and W. Anwer. “Effect of Naturally Contaminated Feed with Aflatoxins on Performance of Laying Hens and the Carryover of Aflatoxin B1 Residues in Table Eggs.” Pakistan Journal of Nutrition 8, no. 2 (January 15, 2009): 181–86. https://doi.org/10.3923/pjn.2009.181.186.
  11. Devreese, Mathias, Gunther Antonissen, Nathan Broekaert, Siegrid De Baere, Lynn Vanhaecke, Patrick De Backer, and Siska Croubels. “Comparative Toxicokinetics, Absolute Oral Bioavailability, and Biotransformation of Zearalenone in Different Poultry Species.” Journal of Agricultural and Food Chemistry 63, no. 20 (May 19, 2015): 5092–98. https://doi.org/10.1021/acs.jafc.5b01608.
  12. Galtier, P. “Biotransformation and Fate of Mycotoxins.” Toxin Reviews 18, no. 3 (August 1, 1999): 295–312. https://doi.org/10.3109/15569549909162648.
  13. Galtier, P., M. Alvinerie, and J.L. Charpenteau. “The Pharmacokinetic Profiles of Ochratoxin A in Pigs, Rabbits and Chickens.” Food and Cosmetics Toxicology 19 (January 1981): 735–38. https://doi.org/10.1016/0015-6264(81)90528-9.
  14. Hassan, Zahoor Ul, Muhammad Z Khan, Ahrar Khan, Ijaz Javed, and Zahid Hussain. “Effects of Individual and Combined Administration of Ochratoxin A and Aflatoxin B1 in Tissues and Eggs of White Leghorn Breeder Hens.” Journal of the Science of Food and Agriculture 92, no. 7 (December 16, 2011): 1540–44. https://doi.org/10.1002/jsfa.4740.
  15. Li, Shao-Ji, Guangzhi Zhang, Bin Xue, Qiaoling Ding, Lu Han, Jian-chu Huang, Fuhai Wu, Chonggao Li, and Chunmin Yang. “Toxicity and Detoxification of T-2 Toxin in Poultry.” Food and Chemical Toxicology 169 (November 2022): 113392. https://doi.org/10.1016/j.fct.2022.113392.
  16. Prelusky, D.B., R.M.G. Hamilton, and H.L. Trenholm. “Transmission of Residues to Eggs Following Long-Term Administration of 14 C-Labelled Deoxynivalenol to Laying Hens.” Poultry Science 68, no. 6 (June 1989): 744–48. https://doi.org/10.3382/ps.0680744.
  17. Ringot, Diana, Abalo Chango, Yves-Jacques Schneider, and Yvan Larondelle. “Toxicokinetics and Toxicodynamics of Ochratoxin A, an Update.” Chemico-Biological Interactions 159, no. 1 (January 2006): 18–46. https://doi.org/10.1016/j.cbi.2005.10.106.
  18. Osselaere, Ann, Mathias Devreese, Joline Goossens, Virginie Vandenbroucke, Siegrid De Baere, Patrick De Backer, and Siska Croubels. “Toxicokinetic Study and Absolute Oral Bioavailability of Deoxynivalenol, T-2 Toxin and Zearalenone in Broiler Chickens.” Food and Chemical Toxicology 51 (January 2013): 350–55. https://doi.org/10.1016/j.fct.2012.10.006.
  19. Sudhakar, BV. “A Study on Experimentally Induced Aflatoxicosis on the Carryover of Aflatoxin B1 into Eggs and Liver Tissue of White Leghorn Hens.” The Pharma Innovation Journal 11, no. 2S (2022): 213–17.
  20. Yiannikouris, Alexandros, and Jean-Pierre Jouany. “Mycotoxins in Feeds and Their Fate in Animals: A Review.” Animal Research 51, no. 2 (March 2002): 81–99. https://doi.org/10.1051/animres:2002012.
  21. Bouhet, Sandrine, and Isabelle P. Oswald. “The Intestine as a Possible Target for Fumonisin Toxicity.” Molecular Nutrition &amp; Food Research 51, no. 8 (August 2007): 925–31. https://doi.org/10.1002/mnfr.200600266.
  22. Fakhri, Yadolah, Mansour Sarafraz, Amene Nematollahi, Vahid Ranaei, Moussa Soleimani-Ahmadi, Van Nam Thai, and Amin Mousavi Khaneghah. “A Global Systematic Review and Meta-Analysis of Concentration and Prevalence of Mycotoxins in Birds’ Egg.” Environmental Science and Pollution Research 28, no. 42 (September 9, 2021): 59542–50. https://doi.org/10.1007/s11356-021-16136-y.
  23. Osaili, Tareq M., Akram R. Al-Abboodi, Mofleh AL. Awawdeh, and Samah Aref Jbour. “Assessment of Mycotoxins (Deoxynivalenol, Zearalenone, Aflatoxin B1 and Fumonisin B1) in Hen’s Eggs in Jordan.” Heliyon 8, no. 10 (October 2022). https://doi.org/10.1016/j.heliyon.2022.e11017.
  24. Wang, Lan, Qiaoyan Zhang, Zheng Yan, Yanglan Tan, Runyue Zhu, Dianzhen Yu, Hua Yang, and Aibo Wu. “Occurrence and Quantitative Risk Assessment of Twelve Mycotoxins in Eggs and Chicken Tissues in China.” Toxins 10, no. 11 (November 16, 2018): 477. https://doi.org/10.3390/toxins10110477.
  25. Tolosa, J., Y. Rodríguez-Carrasco, M.J. Ruiz, and P. Vila-Donat. “Multi-Mycotoxin Occurrence in Feed, Metabolism and Carry-over to Animal-Derived Food Products: A Review.” Food and Chemical Toxicology 158 (December 2021): 112661. https://doi.org/10.1016/j.fct.2021.112661.
  26. Völkel, Inger, Eva Schröer-Merker, and Claus-Peter Czerny. “The Carry-over of Mycotoxins in Products of Animal Origin with Special Regard to Its Implications for the European Food Safety Legislation.” Food and Nutrition Sciences 02, no. 08 (2011): 852–67. https://doi.org/10.4236/fns.2011.28117.
  27. Yuan, Tao, Junyi Li, Yanan Wang, Meiling Li, Ao Yang, Chenxi Ren, Desheng Qi, and Niya Zhang. “Effects of Zearalenone on Production Performance, Egg Quality, Ovarian Function and Gut Microbiota of Laying Hens.” Toxins 14, no. 10 (September 21, 2022): 653. https://doi.org/10.3390/toxins14100653.
  28. Song, Bin, Teng Ma, Damien P. Prévéraud, Keying Zhang, Jianping Wang, Xuemei Ding, Qiufeng Zeng, et al. “Research Note: Effects of Feeding Corn Naturally Contaminated with Aflatoxin B1, Deoxynivalenol, and Zearalenone on Reproductive Performance of Broiler Breeders and Growth Performance of Their Progeny Chicks.” Poultry Science 102, no. 11 (November 2023): 103024. https://doi.org/10.1016/j.psj.2023.103024.
  29. Qureshi, MA, J Brake, PB Hamilton, WM Hagler, and S Nesheim. “Dietary Exposure of Broiler Breeders to Aflatoxin Results in Immune Dysfunction in Progeny Chicks.” Poultry Science 77, no. 6 (June 1998): 812–19. https://doi.org/10.1093/ps/77.6.812.
  30. Ul-Hassan, Zahoor, Muhammad Zargham Khan, Ahrar Khan, and Ijaz Javed. “Immunological Status of the Progeny of Breeder Hens Kept on Ochratoxin a (OTA)- and Aflatoxin B1(Afb1)-Contaminated Feeds.” Journal of Immunotoxicology 9, no. 4 (April 24, 2012): 381–91. https://doi.org/10.3109/1547691x.2012.675365.
  31. Devegowda, G., and D. Ravikiran. “Mycotoxins and Eggshell Quality: Cracking the Problem.” World Mycotoxin Journal 1, no. 2 (May 1, 2008): 203–8. https://doi.org/10.3920/wmj2008.1037.
  32. Onagbesan, O., V. Bruggeman, L. De Smit, M. Debonne, A. Witters, K. Tona, N. Everaert, and E. Decuypere. “Gas Exchange during Storage and Incubation of Avian Eggs: Effects on Embryogenesis, Hatchability, Chick Quality and Post-Hatch Growth.” World’s Poultry Science Journal 63, no. 4 (December 1, 2007): 557–73. https://doi.org/10.1017/s0043933907001614.
  33. Ebrahem, Mohammad, Susanne Kersten, Hana Valenta, Gerhard Breves, Andreas Beineke, Kathrin Hermeyer, and Sven Dänicke. “Effects of Feeding Deoxynivalenol (Don)-Contaminated Wheat to Laying Hens and Roosters of Different Genetic Background on the Reproductive Performance and Health of the Newly Hatched Chicks.” Mycotoxin Research 30, no. 3 (April 11, 2014): 131–40. https://doi.org/10.1007/s12550-014-0197-z.
  34. Yegani, M., T.K. Smith, S. Leeson, and H.J. Boermans. “Effects of Feeding Grains Naturally Contaminated with Fusarium Mycotoxins on Performance and Metabolism of Broiler Breeders.” Poultry Science 85, no. 9 (September 2006): 1541–49. https://doi.org/10.1093/ps/85.9.1541.
  35. Calini, F, and F Sirri. “Breeder Nutrition and Offspring Performance.” Revista Brasileira de Ciência Avícola 9, no. 2 (June 2007): 77–83. https://doi.org/10.1590/s1516-635×2007000200001.
  36. Hassan, ZU, MZ Khan, A Khan, I Javed, U Sadique, and A Khatoon. “Ochratoxicosis in White Leghorn Breeder Hens: Production and Breeding Performance.” Vet. J. 32, no. 4 (2012): 557–61.
  37. Verma, J., T. S. Johri, and B. K. Swain. “Effect of Varying Levels of Aflatoxin, Ochratoxin and Their Combinations on the Performance and Egg Quality Characteristics in Laying Hens.” Asian-Australasian Journal of Animal Sciences 16, no. 7 (January 1, 2003): 1015–19. https://doi.org/10.5713/ajas.2003.1015.
  38. Johnson-Dahl, M.L., M.J. Zuidhof, and D.R. Korver. “The Effect of Maternal Canthaxanthin Supplementation and Hen Age on Breeder Performance, Early Chick Traits, and Indices of Innate Immune Function.” Poultry Science 96, no. 3 (March 2017): 634–46. https://doi.org/10.3382/ps/pew293.
  39. Bozzo, Giancarlo, Nicola Pugliese, Rossella Samarelli, Antonella Schiavone, Michela Maria Dimuccio, Elena Circella, Elisabetta Bonerba, Edmondo Ceci, and Antonio Camarda. “Ochratoxin A and Aflatoxin B1 Detection in Laying Hens for Omega 3-Enriched Eggs Production.” Agriculture 13, no. 1 (January 5, 2023): 138. https://doi.org/10.3390/agriculture13010138.
  40. Surai, Peter F., Ivan I. Kochish, Vladimir I. Fisinin, and Michael T. Kidd. “Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update.” Antioxidants 8, no. 7 (July 22, 2019): 235. https://doi.org/10.3390/antiox8070235.



Organic acids can play a crucial role in zinc oxide replacement

HEADER LOW Shutterstock

Dr. Inge Heinzl, Editor EW Nutrition &
Juan Antonio Mesonero Escuredo, GTM Swine/GPM Organic Acids EW Nutrition

The use of high levels of Zinc Oxide (ZnO) in the EU before 2022 was one of the most common methods to prevent postweaning diarrhea (PWD) in pig production. Pharmacologically high levels of ZnO (2000-3000 ppm) increase growth and reduce the incidence of enteric bacterial diseases such as post-weaning diarrhea (PWD)( Carlson et al., 1999; Hill et al., 2000; Hill et al., 2001; Poulsen & Larsen, 1995; De Mille et al., 2019).

However, ZnO showed adverse effects, such as the accumulation of heavy metal in the environment, the risk for antimicrobial resistance (AMR), and problems of mineral toxicity and adverse growth effects when feeding it longer than 28 days (Jensen et al., 2018; Cavaco et al., 2011; Vahjen, 2015; Romeo et al., 2014; Burrough et al., 2019). To replace ZnO in pig production, let us first look at its positive effects to know what we must compensate for.

ZnO has a multifactorial mode of action

ZnO shows several beneficial characteristics that positively influence gut health, the immune system, digestion, and, therefore, also overall health and growth performance.

FigureFigure 1. Beneficial effects and ZnO mode of action in postweaning piglets

1.   ZnO acts as an antimicrobial

Concerning the antimicrobial effects of ZnO, different possible modes of action are discussed:

  • ZnO in high dosages generates reactive oxygen species (ROS) that can damage the bacterial cell walls (Pasquet et al., 2014)
  • The death of the bacterial cell due to direct contact of the metallic Zn to the cell (Shearier et al., 2016)
  • Intrinsic antimicrobial properties of the ZnO2+ ions after dissociation. The uptake of zinc into cells is regulated by homeostasis. A concentration of the ZnO2+ ions higher than the optimal level of 10-7 to 10-5 M (depending on the microbial strain) allows the invasion of Zn2+ ions into the cell, and the zinc starts to be cytotoxic (Sugarman, 1983; Borovanský et al., 1989).

ZnO shows activity against, e.g., Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Streptococcus pyogenes, and other enterobacteria (Ann et al., 2014; Vahjen et al., 2016). However, Roselli et al. (2003) did not see a viability-decreasing effect of ZnO on ETEC.

2.   ZnO modulates the immune system

Besides fighting pathogenic organisms as described in the previous chapter and supporting the immune system, ZnO is an essential trace element and has a vital role in the immune system. ZnO improves the innate immune response, increasing phagocytosis and oxidative bursts from macrophages and neutrophils. It also ameliorates the adaptative immune response by increasing the number of T lymphocytes (T cells) in general and regulatory T lymphocytes (T-regs) in particular. These cells control the immune response and inflammation (Kloubert et al., 2018). Macrophage capacity for phagocytosis (Ercan and Bor, 1991) and to kill parasites (Wirth et al., 1989), and also the killing activity of natural killer cells depends on Zn (Rolles et al., 2018). By reducing bacterial adhesion and blocking bacterial invasion, ZnO disburdens the immune system (Roselli et al., 2003).

ZnO reduces the expression of several proinflammatory cytokines induced by ETEC (Roselli et al., 2003). Several studies have also shown a modulation effect on intestinal inflammation, decreasing levels of IFN-γ, TNF-α, IL-1ß and IL-6, all pro-inflammatory, in piglets supplemented with ZnO (Zhu et al., 2017; Grilli et al., 2015).

3.   ZnO improves digestion and promotes growth

Besides protecting young piglets against diarrhea, the goal is to make them grow optimally. For this target, an efficient digestion and a high absorption of nutrients is essential. Stimulating diverse pancreatic enzymes such as amylase, carboxypeptidase A, trypsin, chymotrypsin, and lipase increases digestibility (Hedemann et al., 2006; Pieper et al., 2015). However, Pieper et al. (2015) also showed that a long-term supply of very high dietary zinc triggers oxidative stress in the pancreas of piglets.

By stimulating the secretion of ghrelin at the stomach level and thereby promoting the release of insulin-like growth factor (IGF-1) and cholecystokinin (CCK), ZnO enhances muscle protein synthesis, cell proliferation, and feed intake (Yin et al., 2009; MacDonald et al., 2000)).

The result of improved digestion is increased body weight and average daily gain, which can be seen, e.g., in a study by Zhu et al. (2017).

4.   ZnO protects the intestinal morphology

ZnO prevents the decrease of the trans-endothelial electrical resistance (TEER), usually occurring in the case of inflammation, by downregulating TNF-α and IFN-γ. TNF-α, as well as IFN-γ, increase the permeability of the epithelial tight junctions and, therefore, the intestinal barrier (Al-Sadi et al., 2009).

The enterotrophic and anti-apoptotic effect of ZnO is reflected by a higher number of proliferating and PCNA-positive cells and an increased mucosa surface in the ileum (higher villi, higher villi/crypt ratio)(Grilli et al., 2015). Zhu et al. (2017) also saw an increase in villus height in the duodenum and ileum and a decrease in crypt depth in the duodenum due to the application of 3000 mg of ZnO/kg. Additionally, they could notice a significant (P<0.05) upregulation of the mRNA expression of the zonula occludens-1 and occluding in the mucosa of the jejunum of weaned piglets.

In a trial conducted by Roselli et al. (2003), the supplementation of 0.2 mmol/L ZnO prevented the disruption of the membrane integrity when human Caco-2 enterocytes were challenged with ETEC.

5.   ZnO acts antioxidant

The antioxidant effect of ZnO was shown in a study conducted by Zhu et al., 2017. They could demonstrate that the concentration of malondialdehyde (MDA), a marker for lipid peroxidation, decreased on day 14 or 28, and the total concentration of superoxide dismutase (SOD), comprising enzymes that transform harmful superoxide anions into hydrogen peroxide, increased on day 14 (P<0.05). Additionally, Zn is an essential ion for the catalytic action of these enzymes.

Which positive effects of ZnO can be covered by organic acids (OAs)?

1.   OAs act antimicrobial

OAs, on the one hand, lower the pH in the gastrointestinal tract. Some pathogenic bacteria are susceptible to low pH. At a pH<5, the proliferation of, e.g., Salmonella, E. coli, and Clostridium is minimized. The good thing is that some beneficial bacteria, such as lactobacilli or bifidobacteria, survive as they are acid-tolerant. The lactobacilli, on their side, can produce hydrogen peroxide, which inhibits, e.g., Staphylococcus aureus or Pseudomonas spp. (Juven and Pierson, 1996).

Besides this more indirect mode of action, a more direct one is also possible: Owing to their lipophilic character, the undissociated form of OAs can pass the bacterial membrane (Partanen and Mroz, 1999). The lower the external pH, the more undissociated acid is available for invading the microbial cells. Inside the cell, the pH is higher than outside, and the OA dissociates. The release of hydrogen ions leads to a decrease in the internal pH of the cell and to a depressed cell metabolism. To get back to “normal conditions”, the cell expels protons. However, this is an energy-consuming process; longer exposure to OAs leads to cell death. The anion remaining in the cell, when removing the protons, disturbs the cell’s metabolic processes and participates in killing the bacterium.

These theoretical effects could be shown in a practical trial by Ahmed et al. (2014). He fed citric acid (0.5 %) and a blend of acidifiers composed of formic, propionic, lactic, and phosphoric acid + SiO2 (0.4 %) and saw a reduction in fecal counts of Salmonella and E. coli for both groups.

2.   OAs modulate the immune system

The immune system is essential in the pig’s life, especially around weaning. Organic acids have been shown to support or stimulate the immune system. Citric acid (0.5%), as well as the blend of acidifiers mentioned before (Ahmed et al., 2014), significantly increased the level of serum IgG. IgG is part of the humoral immune system. They mark foreign substances to be eliminated by other defense systems.

Ren et al. (2019) could demonstrate a decrease in plasma tumor necrosis factor-α that regulates the activity of diverse immune cells. He also found lower interferon-γ and interleukin (Il)-1ß values in the OA group than in the control group after the challenge with ETEC. This trial shows that inflammatory response can be mitigated through the addition of organic acids.

3.   OAs improve digestion and promote growth

In piglets, the acidity in the stomach is responsible for the activation and stimulation of certain enzymes. Additionally, it keeps the feed in the stomach for a longer time. Both effects lead to better digestion of the feed.

In the stomach, the conversion of pepsinogen to pepsin, which is responsible for protein digestion, is catalyzed under acid conditions (Sanny et al., 1975)group. Pepsin works optimally at two pH levels: pH 2 and pH 3.5 (Taylor, 1959). With increasing pH, the activity decreases; at pH 6, it stops. Therefore, a high pH can lead to poor digestion and undigested protein arriving in the intestine.

These final products of pepsin protein digestion are needed in the lower parts of the GIT to stimulate the secretion of pancreatic proteolytic enzymes. If they do not arrive, the enzymes are not activated, and the inadequate protein digestion continues. Additionally, gastric acid is the primary stimulant for bicarbonate secretion in the pancreas, neutralizing gastric acid and providing an optimal pH environment for the digestive enzymes working in the duodenum.

As already mentioned, the pH in the stomach influences the transport of digesta. The amount of digesta being transferred from the stomach to the small intestine is related to the acidity of the chyme leaving the stomach and arriving in the small intestine. Emptying of the stomach can only take place when the duodenal chyme can be neutralized by pancreatic or other secretions (Pohl et al., 2008); so, acid-sensitive receptors provide feedback regulation and a higher pH in the stomach leads to a faster transport of the digesta and a worse feed digestion.

4.   OAs protect the intestinal morphology

Maintaining an intact gut mucosa with a high surface area is crucial for optimal nutrient absorption. Research suggests organic acids play a significant role in improving mucosal health:

Butyric acid promotes epithelial cell proliferation, as demonstrated in an in vitro pig hindgut mucosa study (Sakata et al., 1995). Fumaric acid, serving as an energy source, may locally enhance small intestinal mucosal growth, aiding in post-weaning epithelial cells’ recovery and increasing absorptive surface and digestive capacity (Blank et al., 1999). Sodium butyrate supplementation at low doses influences gastric morphology and function, thickening the stomach mucosa and enhancing mucosal maturation and differentiation (Mazzoni et al., 2008).

Studies show that organic acids affect gut morphology, with a mixture of short-chain and mid-chain fatty acids leading to longer villi (Ferrara et al., 2016) and Na-butyrate supplementation increasing crypt depth and villi length in the distal jejunum and ileum (Kotunia et al., 2004). However, the villi length and mucosa thickness in the duodenum were reduced. Dietary sodium butyrate has been linked to increased microvilli length and cecal crypt depth in pigs (Gálfi and Bokori, 1990).

5.   OAs show antioxidant activity

The last characteristic, the antioxidant effect, cannot be provided at the same level as with ZnO; however, Zhang et al. (2019) attest to OAs a certain antioxidant activity. Oxalic, citric, acetic, malic, and succinic acids, which were extracted from Camellia oleifera, also showed good antioxidant activity in a trial conducted by Zhang et al. (2020).

Organic acids are an excellent tool to compensate for the ban on ZnO

The article shows that organic acids have similar positive effects as zinc oxide. They act antimicrobial, modulate the immune system, maintain the gut morphology, fight pathogenic microbes, and also act – slightly – antioxidant. Additionally, they have a significant advantage: they are not harmful to the environment. Organic acids used in the proper pH range and combination are good tools for replacing zinc oxide.

References on request




2023 Global Mycotoxin Report

Mycotoxins En

by Marisabel Caballero and Vinil Samraj Padmini, EW Nutrition GmbH

2023 was yet another challenging year for raw materials. Not only is volatility continuing to impact prices and supply security, but 92% of the 7000+ analyses conducted by EW Nutrition were found above detection limits for at least one of the mycotoxins tested.

See how various regions performed in our report.

Wp Mycotoxins En




INFOGRAPHIC – Target measurements for water quality

Target Measurements For Water Quality

Water is a main nutrient and carrier for vaccines, medicine – including antibiotics, but also for pathogens

Chemistry

Ph Icon
pH and pKa

Acidity and dissociation index
Target: pH 3,5-3,8 Important for acids application (E.g. organic acids, etc), and ORP

Ch
Hardness

Content of Ca, sometimes plus Mg
Target: better TDS Important for acid binding capacity (ABC, buffer capacity)

Ch
Oxidation Reduction Potential (ORP)

Target: 650 mV>700 mV » reduces water intake Important for biocides application (E.g. chlorination)

Ch
Total Dissolved Solids (TDS)

Sum of dissolved salts, minerals, metals, carbonates, organics Target: 2000 ppm>3000 ppm » laxation Important for buffer capacity and ORP

Microbiology

Micro
Yeast

Target: < 5000 cfu/gr

Micro
Enterobacterias

Target: < 100 cfu/gr

Micro
Moulds

Target: < 100 cfu/gr




Optimizing DOC quality, part 1: The breeder perspective

Conference report

In the Poultry Academy held by EW Nutrition in the fall of last year, Judy Robberts, Technical Service Manager, Aviagen, explained that the success of a breeder flock depends on producing good quality hatching eggs with high hatchability and delivering first quality chicks. With this in mind, we have to ask two essential questions: What impact does the breeder farm have on chick quality? And What are the most overlooked areas for breeders?

Nest box hygiene

Nest

Nest

Nest box hygiene is key to good quality hatching eggs. Shortly after egg deposition, the eggshell is moist, and the cuticle is not yet an effective protection. In addition, during this period the egg is cooling down from the hen’s body temperature (41°C) to house temperature. Due to this process of cooling down, the content of the egg contracts and a vacuum is created in the egg. In compensation, air enters and forms the air cell. Together with this air, bacteria can easily penetrate the egg. For this reason, it is very important that only hatching eggs are used which have been laid in a clean nest.

Maintaining a hygienic nest environment with routine cleaning of the nest mat or frequently replacing the bedding material will reduce the risk of bacterial contamination.

Clean nests and nesting equipment are essential to avoiding contamination.

Egg collection and pick-up schedule

Collect nest eggs a minimum of 4 times a day, more frequently in hot weather, as eggs cannot cool down sufficiently in the house to interrupt embryonic development. Adjust the exact timing so that no more than 30% (any more will increase the incidence of cracked eggs) of the eggs fall in any one collection. When determining collection times, it is important to remember:

  • The majority of eggs will be laid in the morning, and collection intervals should be managed accordingly.
  • Eggs left in the nest or on belts longer than recommended will have an increased incidence of being cracked or soiled.
  • Transition points on belts need to be smooth so eggs don’t pile up and bump into each other.
  • Never leave eggs overnight in the nests or belts.
  • Eggs left in conventional nests are subject to toe pecks or soiling from other hens.
  • Floor eggs (eggs that were laid outside of the breeder flock’s next boxes) should be collected more often than nest eggs.

It is not advisable to collect eggs in cardboard egg trays/flats, as the fiber material absorbs egg heat, and it takes longer for them to cool down. Because the fiber trays are porous, they can also harbor unwanted organisms/bacteria/fungi and attract vermin.

Ideally hatching eggs should weigh a minimum of 50 g from a flock at least 22 weeks of age. Smaller eggs from younger flocks may be used, however, chick size and early livability will not be optimum. Remember that a chick will yield approximately 68% of the egg size. Therefore, a small egg will produce a small chick.

Egg cleanliness

Always wash hands after collecting floor eggs and before each collection of nest eggs. Floor eggs should not be placed in the nest box – even if they appear clean. Washing floor and dirty eggs removes the eggs protective coating. Always remember, a washed egg is still a dirty egg, but a clean egg is one that was never dirty.

Eggs should be treated with chemical-based antimicrobials, as scraping, rubbing, or washing the eggshell will damage the cuticle and remove the physical and antimicrobial barrier. Since the eggshell permeability increases after 24 hours and makes the eggs more susceptible to bacterial invasion, eggs should be sanitized as soon as possible. The most popular method is fogging as it is safe, the fog reaches all the eggs and the eggs do not get wet.

Floor eggs are not hatching eggs

Floor Eggs

The hatchery cannot fix mistakes from the breeder farm. Therefore, it is NOT recommended to set floor eggs – eggs that were laid outside of the breeder flock’s next boxes. Floor eggs have a higher bacterial load than nest eggs and consequently lower hatchability. They are also potential ‘bangers, or exploders’ and can cross-contaminate other eggs, especially in the same incubator.

Selection of floor eggs must be done at the farm, so that a dirty egg never enters the hatchery. Where strictly necessary, set floor or dirty eggs only if the disadvantages of setting these eggs are fully understood and accepted by the hatchery. If floor eggs are used for hatching, they should be clearly marked and stored separately from the nest eggs so that the hatchery can manage the contamination risk appropriately.

Floor eggs have a significantly higher risk of microbial contamination that will reduce hatch and chick quality.

Egg hygiene – bacterial contamination

Egg condition Total Bacteria (cm2)
Newly laid 300
Cooled clean egg 3,000
“Clean” floor egg 30,000
Dirty egg 300,000

Monitor the number of floor eggs and adjust management practices to minimize them. Floor eggs are a problem that should be tackled at the breeder level, with good breeder management and suitable housing equipment. If levels of floor eggs exceed 2-3% across the life of the flock, there is a problem. Floor eggs will be much higher at the start of production, but by peak production should be down to 1-2%.

Cracked eggs

Eggs with cracks are more likely to become infected and have low hatchability and poor chick quality.

Influence of eggshell crack types on hatchability and chick quality

Treatment Egg weight at transfer (g) Weight loss (%) Fertility (%) Hatchability (%) Chick weight (g) Chick uniformity (%)
Normal 62.0a 11.4c 97.8a 83.9a 48.9a 82.6
Star cracks 55.6b 20.7b 89.4b 49.4b 48.2a 70.3
Hairline cracks 53.1c 24.0a 83.3c 30.0c 45.6b 70.2

Khabisi et al., 2011  a-c Means within a column without a common superscript differ significantly (p ≤ 0.05)

Do not set cracked eggs. Record the number of eggs with cracks, and if the frequency is unsatisfactory, investigate and eliminate possible causes.

On-farm egg storage rooms

Don’t forget that storage starts from the time of laying, not the time of receival at the hatchery.

Eggs need to be cooled below 24oC (threshold temperature or physiological zero) as soon as possible to stop cellular growth of the embryo, until the egg is set at the hatchery. This minimizes embryo mortality, maximizes hatchability and helps to ensure chick quality. Eggs should be stored within 4 hours after collection.

On breeder farms, eggs are usually stored until being transported to the hatchery. The storage duration depends on the egg room capacity, supply of hatching eggs, hatchery capacity, and demand for day-old chicks. Don’t forget that storage starts from the time of laying, not the time of receival at the hatchery.

If the farm has an environmentally controlled egg storage room, eggs can be collected by the hatchery at least twice a week. If the farm has no dedicated egg storage room, eggs must be transported to the hatchery daily. Uncontrolled fluctuations in egg storage temperatures will cause stop-start growth of the germinal disc, which will reduce hatchability.

The temperature of the farm egg storage room should higher than the egg transport truck and the egg transport truck temperature should be higher than the hatchery egg storage room. This consistent decrease in temperature is to prevent condensation (also referred to as sweating) on the eggs. Condensation on the eggshell impairs the natural mechanisms of defense and provide an ideal environment for bacteria grow, penetrate the shell, and contaminate the egg. Condensation on eggs is more common in hot and humid climates common throughout Asia.

Egg storage rooms are important, yet they are frequently overlooked. Areas to consider include:

  • Consistent temperature 24/7 (insulation will minimize variation),
  • Temperature alarm system – set for a maximum temperature of 21°C and a minimum of 16-18 °C,
  • Temperature and humidity sensor placement – don’t place in a direct line of temperature or humidity sources as this will lead to false readings,
  • Do not place sensors against walls,
  • Sensor accuracy (loggers are recommended),
  • Fans to evenly distribute air,
  • Do not place eggs directly against the wall or on the floor in the storage room to maximize air circulation and to ensure uniform conditions, and
  • Avoid direct air flow onto eggs from fans, room coolers and/or humidifiers, as this can increase moisture loss and cause temperature variation throughout the room.

The farm is the starting point to ensure chick quality. Attention to detail and hygiene throughout the whole process is critical. Through monitoring and auditing, areas with deficiencies can be identified and corrected to continue producing high quality hatching eggs.

 




Optimizing DOC quality, part 2: The hatchery perspective

CHICKS

Conference report

At EW Nutrition’s Poultry Academy in the fall of last year, Judy Robberts, Technical Service Manager, Aviagen discussed the impact of the hatchery on chick quality. The transportation and storage of hatching eggs, preventative maintenance, and day-old chick transport all play an essential role. If mismanaged, these areas can negate the benefits of money spent and improvements made at the breeder farm or even in the hatchery itself.

Egg transport from breeder farm to hatchery

The transportation of hatching eggs from the breeder farm to the hatchery is critical: clean and disinfect the truck prior to use, to prevent pathogen spread, and only use a truck that is dedicated to transport hatching eggs. Always transport eggs small end down to avoid loose air cells.

The temperature of the farm egg storage room should higher than the egg transport truck. This decrease in temperature is to prevent condensation (also referred to as sweating) on the eggs. Condensation on the eggshell impairs the natural mechanisms of defense and provide an ideal environment for bacteria grow, penetrate the shell, and contaminate the egg. Condensation on eggs is more common in hot and humid climates common throughout Asia. Even when on-farm egg storage and truck temperatures are equal, sweating can still occur during loading and unloading, especially on warm and humid days. In such a case, a higher on-farm storage temperature of 23°C instead of the generally recommended 18-20°C can be considered.

Avoid sudden temperature changes. Use temperature loggers during transport to record any temperature fluctuations. Take internal egg temperatures at different locations within each batch received at the hatchery, to check temperature conditions during transport. The relative humidity of the truck should be set at 65-70%.

Egg storage at the hatchery

Don’t forget that storage starts from the time of laying, not the time of receival at the hatchery. Egg storage rooms are important, yet they are frequently overlooked. Areas to consider include:

  • Consistent temperature 24/7 (insulation and fans will minimize variation),
  • Avoid condensation,
  • Do not place eggs directly against the wall or on the floor in the storage room, to maximize air circulation and to ensure uniform conditions,
  • Alarm systems – set for a maximum temperature of 21°C and a minimum of 16-18°C,
  • Sensor accuracy (loggers are recommended), and
  • Sensor placement – don’t place in a direct line of temperature or humidity sources as this will lead to false readings. Similarly, allow for air circulation, do not place sensors against walls.

Temperature and storage time

Hatchery

“The holding temperature should be based on storage time,” advised Ms Robberts. Eggs which are set within 4 days of lay don’t need to be kept at a temperature below 20°C; in this case 21–22°C is regarded as optimal. This relatively high temperature promotes the thinning of the albumen, which improves the gas exchange during early incubation. On the other hand, it is low enough to maintain the vitality of the embryo. Best hatches result from eggs 3–7 days of age. Storage for longer than 7 days will require cooler temperatures to help reduce the loss of hatch due to embryo cell death and decline in internal egg quality. If the storage period is less than 7 days a storage temperature of 16-18°C is advised and if the storage period is longer, a temperature of 10-12°C is mostly recommended. The eggs of young breeder flocks are better suited for prolonged storage periods than eggs of older breeder flocks, as albumen quality in eggs of younger breeder flocks is higher.

Differences in temperature will result in the eggs reaching incubation temperature at different times and, therefore, hatching at different times, increasing the hatch window.

Relative humidity

The egg storage room should have a relative humidity of 70-80% to prevent egg dehydration and to maintain internal egg quality. The humidity should be a fine mist, so the eggs do not get wet. Humidifiers should be maintained and cleaned regularly. Dirty humidifiers can be a significant source of bacteria and lead to egg contamination. Follow the same guidelines for trolley placement, spacing, and air circulation in the hatching storage room as the farm egg storage room. Likewise, the same recommendations apply for thermometer monitoring and placement.

Don’t forget the maintenance

Maintenance is often reactive, not preventative – things are only fixed when they break down. This can compromise hatchability and chick quality. A few things to consider when setting up a maintenance plan are:

  • Have a dedicated person responsible for maintenance reporting to the hatchery manager,
  • Produce a list of all the equipment to be maintained including frequencies,
  • Keep records on all performed maintenance,
  • Maintenance includes calibration of equipment,
  • Keep track of spare parts on hand, and
  • Include the building structure and ancillary equipment in the program.

Day-old chick transport

HatcheryTransport cannot improve the quality of the day-old chick, but it can certainly harm the chick’s welfare, growth, development and performance.

If chicks are transported outside their thermoneutral zone (32-35oC) they will start using up the nutrients from the yolk sac at a much faster rate to maintain their core temperature (40-41°C) . A core temperature above 41°C post-hatch will lead to panting resulting to water loss with the risk of dehydration and below 39.5°C will lead to reduced activity and low feed consumption. Adjust the number of chicks per box if optimal temperature inside the chick boxes cannot be achieved due to limitations in transport equipment.

Optimizing transport conditions for day-old chicks from hatchery to farm for is beneficial for subsequent performance.

Conclusion

The modern hatchery is a major investment, so it just makes sense to pay attention to detail to maintain hatching egg quality and produce high-quality chicks. Factors such as egg storage conditions, play a significant role in achieving maximum hatchability. Through monitoring and auditing, areas with deficiencies can be identified and corrected to continue producing high quality hatching eggs. The transport of day–old chicks from should ensure that the birds arrive at the farm in the same condition in which they left the hatchery.




Getting broilers off to a good start: House preparation

Temporary guards to confine chicks

Conference report

At the recent EW Nutrition Poultry Academy, Judy Robberts, Technical Service Manager, Aviagen discussed the management of broilers for growth & production efficiency. She noted that the first 7 days is the most critical period in the life of a broiler chicken. “In this period chicks are the most efficient at converting feed to weight, however, its digestive and immune systems are still immature, so you want to get your chicks off to the best possible start,” she said.

“Seven-day weights are a key KPI of the success of brooder management – chicks should weigh at least 4 times their initial body weight. Also, each 1 gram of bodyweight at 7-days of age is equivalent to 10 grams at 35-days.The goal of management during the first week is to ensure that chicks consume enough feed and water because chick weight at 7 days of age is strongly correlated to final body weight at slaughter,” noted Ms. Roberts.

To ensure chicks got off to the best start, her presentation included 6 essential factors for house preparation and brooder set-up for the successful placement of chicks:

Planning

Planning should start well before chicks arrive on farm. The expected delivery date, time and number of chicks should be established with the supplier well in advance of chick placement. It is impossible to do the best possible chick placement if you do not know what you are going to receive, at least several days in advance. For example, the age and vaccination status of the donor flock. This will ensure that the appropriate brooding set-up is in place and that the chicks can be unloaded and placed as quickly as possible.

Chick placements should be planned so that chicks from different aged donor flocks can be brooded separately. Chicks from young donor flocks will achieve target body weights more easily if kept separate until the time of grading at 28 days of age.

Also, is the capacity of the equipment, such as feeders, drinkers, water pressure etc., capable of meeting the needs of the number of chicks to be placed? Do you have necessary supplies, such as chick paper, on hand?

Equipment test

  • After cleaning and disinfection is completed, check that all water, feed, heat, ventilation, and lighting equipment is fully functioning and properly, adjusted for the needs of day-old chicks before the chicks arrive. Heaters should be checked and serviced before starting pre-heating.

Litter and pre-heating

Chicks do not have the ability to regulate body temperature for the first 5 days and are not able to fully control their body temperature until about 14 days of age. They quickly become chilled if placed on cold litter, which hinders their search for feed and water. In case of floor rearing, bring in the litter after preheating the floor for at least 24 hours (commencing from when the floor is dry and depending on heater type and capacity, season and building insulation) before chicks arrive to allow the litter to reach 28-30°C. Floor temperature is more important than air temperature because chicks are in contact with litter via bare feet. If the floor is cold, chicks lose body heat to the floor through their feet and through their body when they sit down. Measure temperatures throughout the brooding area with a digital on the litter surface and approximately 2 cm above the litter, as this is where the chicks will be placed.

Litter should be evenly spread, and at least 5cm deep to provide adequate insulation from cold house floors. Air temperature will rise rapidly after the heat is turned on, but it takes much longer to thoroughly warm the mass of litter on the floor. Litter should have good moisture absorption and water holding capacity. Uneven litter can restrict access to feed and water and may lead to a loss in uniformity.

Preheating can ensure that the litter is properly dried prior to placement to reduce bacterial growth and ammonia production.

Brooding area set-up

Allow an initial chick stocking density of 40-50 chicks/m2, do not give excess of floor space. The size of the brooding area will also be determined by the output of the heat source.

Light intensity should be30-40 lux, uniform and continuous for the first 48 hours to ensure chicks find food and water.

The use of a brooder guard is recommended for the first 5-7 days to confine chicks to near the heat source. The guard should be about 50 cm high. If made of solid material, such as cardboard, it can also protect the chicks from drafts. Brooders should be 2 m away from brooder edge.

Spot Brooder
Example of spot brooder layout

Temporary guards to confine chicks
Temporary guards to confine chicks

Minimum ventilation set-up

Ventilation distributes heat evenly throughout the house and maintains optimum air quality in the brooding area. Minimum ventilation should begin with house preheating 24-48 hours prior to placement to remove waste gases and excess moisture.

Target that 24 hours before chicks arrive to achieve 28-30oC air and floor temperature, and relative humidity should be 60-70% when chicks enter the house to prevent dehydration. Humidity exceeding 70% limits the amount of evaporation, causing wet litter and excessive litter caking.

Young birds are very susceptible to drafts, so air speed in the brooding area (at chick level) should be less than 0.15m/second.

  • Allow enough air exchange with a minimum ventilation rate at placement of 0.09m3/hour. Use a 5 minute fan cycle (with a thermostat override) – 30-45 seconds on.
  • Make sure temperature and humidity sensors are placed correctly. For spot brooding, 2 meters away from the edge of each brooder, and for whole-house brooding at the center and two additional sensors at the end wall of the house. Sensors should not in contact with birds and out of direct lines with heating system.

Feed and water supply

Starter feed should be ordered to ensure delivery 1-2 days before chick placement.

Once the chicks arrive, they need to begin drinking and eating as soon as possible. Poor quality crumble or pellets will result in reduced feed intake and poor performance. Feed distribution should minimize the physical deterioration in crumble and pellets. The amount of fine particles (<1 mm) in sieved crumbles or mini-pellet should be below 10%.

Turn on the mechanical feeding system and ensure all pans or chain feeders are filled. Automatic pan feeders should be buried into the litter, so chicks can easily access them.

Spread a thin layer of starter feed onto chick paper to cover at least 80% of the paper area and fill any feeder trays 1-2 hours prior to chick arrival to prevent feed and water from becoming too hot. At least 20-30% of the total feed offered should be placed on paper. Paper should be positioned alongside the automated feed and drinking systems to aid in the transition from temporary to automated systems. Replenish feed on paper in small amounts given frequently. At placement, chicks should be placed directly onto paper, so that feed is immediately found.

If using paper, the feed area should cover at least 80% of the brooding area (avoid drinkers and feeders)

Papered Feed Area
Papered Feed Area

Never place supplemental feed or water directly under or near brooders. Ensure that supplementary feed never runs empty and always remains fresh.

Water is the most immediate need when chicks arrive at the house because they can easily dehydrate during hatching, processing, and transport to the farm. Chicks must have unlimited access to clean and fresh water (18-21°C). Cold water will chill the chicks.

  • Flush drinkers 2-3 times to remove any remaining disinfectant. Remove dust and litter from cups. Adjust drinker line height to bird’s eye level. Ensure the placement of supplementary drinkers and feeders allows easy access for chicks and workers.

At placement, lower nipple drinkers to the chick’s eye level with sufficient water pressure to produce a droplet of water suspended from the nipple without dripping

Droplet Drinking
Droplet Drinking

Ms. Robberts concluded that “if house preparation is done properly then chicks are ready for a good start.” If there is any delay, it is always better that the chicks waits inside the truck (if its environmentally controlled) rather than getting cold waiting in the house. Chicks cannot become cold or heat stressed!”




Effects on Performance and Gut Health of Ventar D Supplementation in Broiler Diets

Summary of study by Necmettin Ceylan, Sait Koca, Nejla Kahraman, Ankara University, Faculty of Agriculture, Animal Science, 6110 Ankara/Türkiye

The study conducted by Dr. Celyn et al. in 2023 focused on the impact of Ventar D supplementation in broiler diets on growth performance and gut health. The trial was carried out over six weeks on Ross 308 broiler chicks, comparing a control group with an experimental group supplemented with Ventar D. The trial feed was based on corn, soybean meal, wheat, sunflower meal, and poultry oil.

Key Findings

Growth Performance: The study demonstrated that Ventar D supplementation significantly improved body weight gain, feed consumption, feed conversion ratio (FCR) and EPEF during the starter, grower, and finisher periods. The overall performance of chickens fed with Ventar D was notably better, showing a 6.5% higher body weight and 1.67% better FCR compared to the control group.

Treatments BWG, g FCR Corrected FCR2565 FI, g Mortality,% EPEF
Control 2520.6a±32,77 1.620a±0.006 1.629a±0.011 4082.2a±46.77 3.25±0.28 367.2a±5.18
Ventar D 2684.3b±23.65 1.593b±0.010 1.568b±0.015 4273.9b±19.89 2.75±0.53 399.8b±4.35

Different letters indicate significance; P ≤ 0.05

Liver Enzymes: The addition of Ventar D led to a significant decrease in serum Alanine aminotransferase (ALT) levels

Treatments ALP ALT
Control 286.70±54.98 1.505a±0.390
Ventar D 301.50±87.19 0.832b±0.181

Different letters indicate significance; P ≤ 0.05

Gut Health: Ventar D supplementation resulted in higher concentrations of short-chain volatile fatty acids (SCVFA) in the cecum.

  Acetate Propionate Butyrate Isobutyrate Valerate Isovalerate BCFA Total SCFA
Control 27.22a±1.26 8.21±0.38 7.24a±0.41 0.848±0.078 0.964±0.043 0.881±0.054 2.69a±0.12 45.36a±1.53
Ventar D 30.51b±0.80 9.36±0.56 8.86b±0.44 0.878±0.070 1.121±0.077 0.993±0.031 2.99b±0.08 51.73b±1.32

Different letters indicate significance; P ≤ 0.05

Conclusion

Considering the results summarized in the tables above according to the feeding phases and the overall study (0-41 days): Ventar D supplementation of broiler feeds at the level of 100 g/ton significantly improved growth performance parameters during the starter, grower and finisher periods (P ≤ 0.05), and in the final results was stable at 6.5% higher BW and 1.67% better FCR compared to the control group. European Production Efficiency Factor (EPEF) was also significantly better than the control group (P ≤ 0.05).

In the study, liver enzyme and the concentration of short-chain volatile fatty acids also improved significantly with the addition of Ventar D, which may be attributed to the gut health related mode of action for Ventar D.




Low Crude Protein Diets in Poultry: Understanding the Consequences

BROILER

Conference report

The concept of feeding poultry, specifically broilers and layers, with reduced crude protein (CP) diets is gaining traction among nutritionists. The economic implications of balancing amino acids currently dictate dietary CP levels. At the recent EW Nutrition Poultry Academy in Jakarta, Indonesia, Dr. Steve Leeson, Professor Emeritus at the University of Guelph, Canada, raised a crucial question: “What does ‘low CP’ really mean?” He states that it typically means a reduction of maximum 2-3% relative to current CP levels.

Low CP diets generally involve a decrease in soybean meal, compensated by higher grain content. This change increases dietary starch and decreases dietary lipid levels. To meet nutritional needs, these diets also include higher amounts of crystalline (synthetic) amino acids.

Dr. Leeson outlined the advantages and disadvantages of low CP diets. Positives include improved gut health due to reduced proteolytic bacteria, less environmental pollution, lower water intake (improving litter quality), improved sustainability indices, increased dietary net energy, and better performance during heat stress. Negatives encompass issues like lower pellet quality, altered dietary electrolyte balance, higher diet costs, reduced growth rate and feed efficiency, and increased abdominal fat deposition. There are also questions about the presumed complete utilization of crystalline amino acids, which can be as high as 25kg/MT in these diets.

Challenges with Low CP Diets

  • Protein vs. Amino Acids: Diets are typically formulated based on digestible amino acid content, though minimum CP levels remain common, to avoid reduced performance: Dr. Leeson noted that broiler diets with less than 19% CP in starter and 15% in finisher phases, and layer diets below 13% CP, often fail to deliver adequate performance, regardless of digestibly amino acid supply.
  • Utilization of Free Amino Acids: The crystalline amino acids are immediately absorbable in the small intestine, contrasting with protein-bound amino acids that are absorbed as di- and tri-peptides. Amino acids absorption dynamics and endogenous loss of amino acids are affected by (high) levels of  crystalline amino acids.
  • Non-Essential Amino Acids: The impact of reduced CP on animal performance might be related to the lower levels of presumed non-essential amino acids, e.g. glycine and serine.  This is an area for further exploration.
  • Energy Level Considerations: Dr. Leeson suggests maintaining specific ratios of digestible lysine to apparent metabolizable energy in broilers at different growth stages. The heat increment of CP is an essential factor, as it reduces net energy efficiency, possibly requiring an adjustment in amino acid to metabolizable energy ratios as poultry diets are not based on net energy values.
  • Gut Health: Lower CP levels can reduce the flow of undigested protein into the hindgut, reducing the risk of necrotic enteritis, and the production of harmful metabolites, like biogenic amines.
  • Role of Proteases: Protease use can lead to a further 2-4% reduction in dietary CP, with the response depending on the inherent protein digestibility of the diets.
  • Impacts on Pellet Quality: Due to the binding properties of protein, each 1% reduction in CP typically results in a 2% decrease in pellet durability (index).
  • Electrolyte Balance: Reduced CP can significantly lower dietary electrolyte balance, which has to be considered in feed formulation. Amongst the nutrients contributing to DEB value, Sodium and Potassium appear to be the most influential minerals to consider.

Conclusion

Dr. Leeson anticipates that low CP diets will become increasingly relevant. They have the potential to reduce environmental pollution and dependence on soybean meal, despite current challenges in reducing feed costs.

 

***

EW Nutrition’s Poultry Academy, featuring Dr. Leeson, took place in Jakarta and Manila in early September 2023. With nearly 50 years of industry experience, Dr. Leeson has made significant contributions to poultry nutrition and management, evidenced by his numerous awards and over 400 published papers.