Water Hygiene: The missing ingredient for successful ABF poultry

art79 header

By T.J. Gaydos

Water quality is a frequently overlooked part of animal production and it becomes even more important when producing animals in an antibiotic-free (ABF) system. Chickens drink almost twice as much water as they consume feed, and water hygiene is often a second-level priority. Microbes present in water can be primary or secondary pathogens or non-pathogenic. Consuming impure water can add a challenge to the immune system, negatively impacting performance. 

Water hygiene is essential

Water hygiene is essential for achieving antibiotic-free poultry production

Significant resources are spent on the correct nutrients in the diet and the correct additives for bird health. Water quality should be a priority, and a water quality monitoring program is essential for success in an ABF program. All things being equal, animals will perform better if they have access to high-quality water.

The variability of water quality in the grow-out region should determine how many water quality samples are taken. In highly variable areas, water quality should be measured at every season change on enough farms in every region to know if the solutes are changing. If the water quality is good and consistent, monitoring may be reduced significantly. Water quality should be a part of a “problem farm” work up or related to otherwise unexplained poor performance.

Water-soluble additives: Prevent biofilm

The use of water-soluble products is common in ABF production systems and their frequent use may provide a carbon source for bacteria. This, along with warm temperatures and slow water flow in enclosed water systems, makes the perfect environment for biofilm development.

It is important to frequently flush lines, give birds access to fresh water between additives, and sanitize water lines after using a product that can provide nutrients to bacteria in the line. The biofilm is a perfect location to harbor and protect pathogens from acids and mild or under-dosed disinfectants.

Designing a water quality program

Sample collection

The first step to building a water quality program is to understand the challenge on every farm. Correct sample collection is critical to achieving good results. Take a water sample from as close to the well as possible and submit for water quality analysis: pH, hardness, and minerals. This sample should also be submitted for bacterial load: total aerobic plate count (CFU) per mL and total coliforms per mL.

Monitor bacterial load

A drip sample should be collected from the end of the line for bacterial load analysis as well. This will help determine if the bacterial challenge begins at the source or is limited to the house. Additionally, a swab from the inside of the end of the water line should be taken to determine the level of biofilm. The total bacterial count should be less than 1,000 CFU/mL without fecal coliforms in a free-flowing sample, and total bacteria should be less than 10,000 CFU/mL on a biofilm swab.

Monitor water pH

Water should have a pH between 5 and 8. Water with a pH consistently lower than 5 can be damaging to equipment, while a pH over 8 reduces the efficacy of many disinfectants and can have a bitter taste to birds. Hard water can increase scaling of lines and equipment, leading to leaking seals. Scale also provides a matrix for biofilm formation, making cleaning and disinfection more difficult.

Clean and disinfect water lines

Cleaning water lines between flocks is the minimum program for ABF production. Stabilized hydrogen peroxide products are excellent for disinfecting water lines between flocks. The levels needed for proper disinfection of lines are generally too strong for birds, and the lines must be flushed prior to bird placement.

Water lines are often only cleaned in the house; it is important to periodically clean the lines that transport water from the well or water source to the poultry house as this may be a significant reservoir for bacteria. If the well is identified as a source of contamination, it is essential to seek the help of a qualified technician before adding any sanitizing product to a wellhead.

Designing a water quality program poultry farm

Continuous disinfection

Ideally, water should be continuously disinfected with a product that is approved for poultry consumption. One of the best products for continuous disinfection is chlorine dioxide, which is effective at reducing bacteria and also reducing the concentrations of some mineral components. High levels of iron in the water can create a favorable environment for E. coli and other bacteria such as C. perfringens.

In addition to disinfection, chlorine dioxide is an effective treatment to reduce soluble iron levels. High sodium and chloride levels can lead to flushing and promote the growth of some bacteria. If high levels of sodium and chloride are consistent across a grow-out region, it may be possible to decrease the levels in the feed to reduce flushing. If the levels of sodium and chloride are considerably high, reverse osmosis should be considered to improve water quality.

Bottom line: invest in high-quality water

Another effective product is stabilized hydrogen peroxide at an appropriate residual level for bird consumption. There are other options for water line sanitation that can be explored on a case-by-case basis.

There are excellent online resources [link] for poultry water quality. The important message remains, in any case, that investment in high-quality water is a critical step for success in ABF poultry production.

 

References

Austin, B.J., J. Payne, S.E. Watkins, M. Daniels, and B.E. Haggard. 2016. How to Collect Your Water Sample and Interpret the Results for the Poultry Analytical Package. Arkansas Water Resources Center, Fayetteville, AR, FS-2017-01: 8 pp.

Scantling, M. and Watkins, S. 2013. Identify Poultry Water System Contamination Challenges. FSA8011. University of Arkansas Division of Agriculture Research and Extension.

Watkins, S. 2008. Water: Identifying and correcting challenges. Avian Advice 10(3):10-15. University of Arkansas Cooperative Extension Service, Fayetteville, AR




Why ABF poultry producers need to invest in pullet rearing

art82 header

By T.J. Gaydos

There is no more efficient place to invest than in pullets. Pullets are the future of an integrated company. Successful pullet rearing is simply attention to detail, management, serology, biosecurity, vaccination, and worming. Decisions, both good and bad, made during rearing will follow that company for a year. This is especially true related to the introduction of pathogens such as mycoplasmas, Salmonella, and reoviruses, which are persistent and can be vertically transmitted. The importance of biosecurity in any pullet program cannot be overstated, but it is even more critical in an antibiotic-free (ABF) program.

The 4 pillars of rearing pullets without antibiotics

1. Effective management

It is imperative to properly manage flock uniformity, weight, and frame size. For details on how to manage and feed pullets, it is always advised to use the technical support of the primary breeder company because no one knows their bird better than them. Pullet uniformity is critical to the success of the flock in the breeder house. Uniform and healthy pullets are easier to manage to peak and easier to feed for persistency of lay.

Uniform and consistent feed distribution is crucial to managing pullets: people must monitor feeding on a regular and consistent basis. Simply because the feed disappears before the next feeding does not mean it was distributed in an effective way to all birds. Non-uniform feed distribution is not only bad for uniformity but may train other undesirable behaviors such as race tracking, foraging, and roosting on lines to feed. These behaviors increase the risk for trauma and picking up pathogens in the litter.

Why ABF poultry producers need to invest in pullet rearing

There are multiple stressful transition periods in the life of a pullet. It is advised to spread the stressors apart as much as possible. Do not make major management changes, such as turning birds out, changing their lighting or feed program, all at the same time. The more gradual the transitions are, the easier it will be on the birds, and the more likely they will perform as desired.

2. Heightened biosecurity

It is recommended to have dedicated inside and outside boots for all growers, service technicians, and regular visitors. A divided entrance (i.e., Danish entry) is ideal to further limit the risk of bringing pathogens in from the outside. Rodent and insect control is another important facet of pullet biosecurity and must be closely monitored. Vehicles entering the farm must be consistently cleaned and disinfected.

Managing the risk of pathogen introduction via feed is important and feed hygiene should not be ignored. Visitors are almost always the cause of biosecurity breaks and pullets receive a lot of visitors including vaccination crews that travel between farms with equipment. Ensure that vaccination equipment is properly sanitized between farms and crews always use appropriate personal protective equipment.

3. Focus on intestinal health

One of the most difficult challenges to raising pullets is conferring early and uniform immunity to coccidia. These parasites can be managed successfully with chemicals, ionophores, or vaccine programs, although every program has pros and cons. A fundamental problem with an ionophore program is accidentally feeding ionophores (technically considered antibiotics) to ABF flocks due to logistic errors at the feed mill.

Chemical programs can be very effective at managing Eimeria spp. cycling. Most of the time they work a little too well and birds do not develop adequate immunity; consequently, putting flocks at risk of breaking with Eimeria necatrix after chemicals are removed from the diets. A coccidiosis vaccine program is the most sustainable for rearing pullets.

The relative low density of birds, compared to broilers, and the lower feed consumption and thus lower consumption of water can result in dry litter early. The reduced density can also make it difficult for birds to pick up oocysts early in the coccidiosis cycle. Several techniques may be used to increase the chance of success. Birds can be spray-vaccinated at the hatchery and again when placed in the house. Brooding the birds in a portion (e.g., ¼) of the house for the first 7 to 8 days before turning them out to half house, and then to full house can improve early cycling.

chicks

Carefully using built-up litter may improve exposure to beneficial microflora; thereby, improving gut health. Managing intestinal health with the correct non-antibiotic feed additives such as saponins, essential oils, and pre and probiotics can significantly improve pullet health.

A well-designed deworming program is important for bird health and uniformity. It is also essential to help reduce the risk of Blackhead disease, which is caused by Histomonas meleagridis, while its intermediate host is Heterakis gallinarum (cecal worms).

4. Tailored vaccination program

Building a vaccination program for pullets has two critical functions: protect the health of the pullets/breeders and protect the health of the offspring by conferring maternal immunity. The exact constituents of the program depend heavily on regional disease challenges. Matching the program to disease pressure is best accomplished with a combination of a rigorous serology program for hens as well as periodically checking the blood of processing-age broilers.

Serology combined with open communication between the breeder and broiler departments about disease challenges can greatly improve the antigen choices of the vaccination program. Pullet rearing is attention to detail – managing the small details will help the long-term success of the poultry company.




Necrotic Enteritis control for ABF poultry production

art81 header

By T.J. Gaydos

Control of Necrotic Enteritis (NE) can be one of the most difficult challenges in a system without the availability of antibiotics. In addition, NE is a costly disease because of mortality and loss of performance. Necrotic enteritis is a multifactorial disease that requires damage to the intestinal mucosa, disruption of the intestinal microflora, and a toxin-producing strain of Clostridium perfringens. If any one of these three items is removed or lessened, the severity or incidence of NE will be reduced.

The 3 must-haves for antibiotic-free necrotic enteritis control in poultry

1. Prevent mucosal damage

Prevent mucosal damage

The most common cause of damage to intestinal mucosa in broilers is excessive cycling of Eimeria maxima. The ubiquitous nature of this parasite in poultry production makes it one of the most important contributors to NE. This species of coccidia is most relevant with respect to NE because its life cycle invades deeper into tissues than other species leading to more damage to the intestinal mucosa.

The life cycle of coccidiosis lasts roughly seven days, with each cycle producing exponentially higher numbers of the parasite. Three consecutive replication cycles are needed to produce immunity. The biology of E. maxima is a significant reason why NE commonly occurs around 18-21 days. However, many other things may damage the intestinal mucosa, including mycotoxins, worms, and rancid fat. Managing all sources of mucosal disruption are critical to preventing and controlling NE.

2. Support the microflora

The importance of the microbiome on health is well known; the ability to modify the microbiome to a more appropriate or healthy status is a more difficult challenge. There is a tremendous volume of research in all species about the impact and importance of intestinal microflora on immunity, health, and disease. The microflora is not static but rather a dynamic community of microorganisms that change with bird age, time of day, composition of the diet, and treatment with antibiotics or other additives. Management of intestinal microflora is a very difficult process because its development and manipulation are not fully understood.

Any significant feed formulation or feed form change is a stress event for intestinal microflora. Feed changes are thus high-risk periods for the development of NE. It is a best practice to avoid feed changes when birds are in the NE risk window. It is important to support the intestinal microflora with either in-feed or in-water products to improve intestinal health during feed changes.

Chicken

It is important to avoid feed outages. After a feed outage, the disruption to the microflora and the increase in mucus production increases the likelihood of an NE outbreak in the following days. Preemptively adding a water additive to improve intestinal health directly after a feed outage can reduce the risk of NE in the flock.

When managing intestinal microflora: probiotics, prebiotics, plant extracts, enzymes, and organic acids are the most commonly used tools. Each of these product classes interacts with the bird and its flora in a different way and selecting additives with complimentary modes of action is critical to the success of the program. Direct colonizing organisms like Lactobacillus spp. can help to directly change the microflora, providing a more mature and healthier microbiome.

Prebiotics such as mannan- and fructo-oligosaccharides provide a food source for beneficial microorganisms and can interact directly with the immune system of the bird. Plant extracts can have antimicrobial or anti-inflammatory properties that can also modulate the microflora by impacting the growth and metabolism of different species of microorganisms in the intestine.

3. Limit Clostridium perfringens growth

It is not possible to eliminate toxin-producing C. perfringens from the environment. Clostridia are spore-forming microorganisms that are very resistant to disinfectants. However, it is possible to manage the abundance of these microorganisms in a system through proper litter management, sanitation, and disposal of mortality.

A house that has a history of NE should have the litter completely removed and the environment cleaned and disinfected as much as the facility will allow. New clean shavings should be brought into the house at a sufficient depth to limit access to the floor. Several non-antimicrobial feed and water additives have shown promise in reducing numbers of C. perfringens in feces of infected birds. Feed and water additives are an essential tool to reduce the impact of NE.

Limit Clostridium perfringens growth

Conclusion: the more you prevent, the less you have to treat

Even with the best management practices, outbreaks of NE will happen. In order to successfully treat a flock with NE, it is critical to catch the mortality early. Once a flock is experiencing high mortality from NE, it is very difficult to treat because the sickest birds will not be drinking enough water to receive a significant amount of water additives. Treating or managing an outbreak is as much art as science, but it is a combination of reducing the inciting causes.

Manage microflora and clostridial growth with organic acids, copper sulfate, phytogenics, or probiotics. Reduce coccidiosis cycling with amprolium, saponins, or other phytogenics. With excellent husbandry, the impact of NE can be reduced drastically even without using antibiotics. Managing NE incidence in poultry is a mixture of animal husbandry, managing coccidiosis cycling, feed and water additive selection, and high-quality nutrition.

 




Nutrition and feeding in ABF poultry production

art80 header e1633679843829

By T.J. Gaydos

Management practices and feed additive selection are often discussed when working in antibiotic-free (ABF) poultry production. Nutrition is another critical component of any agricultural animal system. Working with a qualified nutritionist will help ensure that the diet is correctly formulated with high-quality ingredients.

Chick Feed 

5 nutrition tips for antibiotic-free poultry production

1. Consider feed form and delivery

Feed form and delivery are nearly as important as the nutrient content of the formulation. If feed form or handling is improper and feed separates, is improperly mixed, or oxidized, the birds will not appreciate the effort that went to develop a balanced diet. A durable pellet or crumble is important to allow all birds to have equal access to a nutritionally complete diet with every bite.

Additionally, if the finished feed or individual ingredients are not stored properly, they may not have the same value that is attributed to them in the formulation process. Other than correct nutrient formulation, three parts of the diet that should be considered are feed additives, mycotoxin contamination, and lipid oxidation.

2. Prevent oxidative stress

The impact of oxidative stress on the intestinal mucosa, immune system, and performance is well-documented across species. Oxidized fat sources reduce the available energy, but equally significant to bird health is the reduction in vitamin availability, resulting in increased oxidative stress for the animal. Protecting the sources of fat and the finished feed is important to spare fat-soluble vitamins, specifically vitamin E.

Oxidized fat can also irritate the intestinal mucosa leading to decreased absorption of nutrients. The process of breaking down macromolecules during digestion and converting them to forms useful for further metabolism is a significant contributor to oxidative stress. The immune system is also a great contributor to oxidative stress. Immune cells use reactive oxygen species to kill pathogens that are phagocytosed.

A large portion of the immune system is located in the GI tract in order to protect the animal from pathogens crossing from the gut into the animal. In addition to being a contributor to oxidative stress, the immune system can be negatively impacted by oxidized feed (Liang et al., 2015). The combination of metabolic and immune activity in the intestines puts it at a high risk of damage from oxidative stress. It is vital to protect fat sources with synthetic or natural antioxidants; reducing the incoming stress from oxidized fat should be a priority to improve poultry health.

Chicken Feed

3. Mitigate mycotoxin risks

Another risk to bird health and mucosal integrity is mycotoxins. Diets containing mycotoxins may damage the mucosa of the GI tract directly or may damage other organs leading to significant health challenges and decreases in performance. Some mycotoxins or compounds created by fungi can disrupt the intestinal microflora by acting on bacterial cells, as many fungal metabolites are antimicrobial.

The best approach to managing mycotoxins is eliminating them from the system by purchasing high-quality grain and storing it appropriately. It is impossible to completely eliminate all risks of receiving ingredients contaminated with mycotoxins. An internal program should be developed to test the incoming ingredients and finished feed regularly for mycotoxins.

Knowing the challenging ingredient sources may help reduce the risk to highly susceptible birds like Breeders or chicks through dilution in formulation or the addition of toxin binders and/or enzymes. Several toxins may be found in a feed stuff and many of the mycotoxins are synergistic in their deleterious effects (Murugesan et al., 2015). Different binders have varying affinity for different mycotoxins; closely examining the product literature can help to choose the correct product to mitigate risk.

4. Choose optimal additives

Choosing the correct feed additive program for intestinal health, food safety, and growth performance depends on the specific challenges in the complex. When selecting a feed additive that is not FDA approved, it is important to base the decision as much as possible on scientific evidence through peer-reviewed research.

In addition to published data, internal testing within the production system is also helpful to ensure the product matches the local challenge. In a market saturated with “natural” products, it is essential to find a supplier that is trustworthy and is engaged in the success of the complex and health of the birds, not only in selling products. A partnership will be much more successful in the long term than only a buy/sell arrangement.

5. Manage expectations

When considering removing antibiotics from a program, the temptation is to expect natural products to completely replace the efficacy of antibiotics. This is an unreasonable expectation. The success of a transition to ABF production relies on modifying management practices as well. The vast majority of program success is related to attention to the details of husbandry, biosecurity, and sanitation. The remaining opportunity to improve health rests on the additive program.

References

Liang, Fangfang, Shouqun Jiang, Yi Mo, Guilian Zhou, and Lin Yang. “Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-Feathered Broilers.” Asian-Australasian Journal of Animal Sciences 28, no. 8 (2015): 1194–1201. https://doi.org/10.5713/ajas.14.0924.

Murugesan, G.R., D.R. Ledoux, K. Naehrer, F. Berthiller, T.J. Applegate, B. Grenier, T.D. Phillips, and G. Schatzmayr. “Prevalence and Effects of Mycotoxins on Poultry Health and Performance, and Recent Development in Mycotoxin Counteracting Strategies.” Poultry Science 94, no. 6 (2015): 1298–1315. https://doi.org/10.3382/ps/pev075.

 




EW Nutrition launches Pretect D to support poultry gut health during challenging periods

shutterstock 766401004 scaled

VISBEK, 28 September – EW Nutrition announces the launch of a novel gut health solution for poultry. Pretect D, a proprietary blend of phytomolecules, helps maintain bird performance and farm profitability.

Trials indicate that Pretect D offers natural support even during Eimeria-related challenges, making it an effective addition to programs focused on gut health issues.

“EW Nutrition is a front runner when it comes to innovations driving lower use of antibiotics and harmful chemicals in the animal production industry,” says Michael Gerrits, Managing Director. “The introduction of Pretect D signifies our commitment to helping customers make livestock production more sustainable through best-in-class natural solutions.”

Research with Pretect D conducted around the globe, in research institutes and under commercial conditions, evidenced improved body weight and lower feed conversion rate. EW Nutrition is also following up on initial results indicating significant oocyst count reduction.

“Poultry producers are affected by reduced animal performance and high costs for preventive and therapeutic control,” says Madalina Diaconu, Product Manager for Pretect D. “What our product brings to the market is an ability to support the natural defenses of birds. We’re also investigating our product’s ability to impair the growth cycle of the Eimeria population.” Pretect D is developed to be used in combination with vaccines, ionophores and chemicals, as part of the shuttle or rotation program.

 

About EW Nutrition

For the global animal production and feed industries, EW Nutrition offers innovative, comprehensive solutions for gut health, feed quality, pigmentation, digestibility, on-farm performance and more.

Headquartered in Germany, with R&D and manufacturing facilities around the world, EW Nutrition owns the entire value chain, from development and scale-up to production, distribution, and support in 90+ markets.

 




What poultry producers need to know about coccidiosis control

art65 header scaled

By Madalina Diaconu, Product Manager Pretect D, and Dr. Ajay Awati, Global Category Manager Gut Health & Nutrition, EW Nutrition 

 

Coccidiosis is one of the most devastating enteric challenge in the poultry industry costing over over 14 billion US$ per year (Blake et al., 2020). In the early days of  intensive poultry production, outbreaks of Eimeria tenella, were most destructive. Eimeria tenella is a coccidia species that causes severe haemorrhages and hypovolemic shock, leading to a fatal outcome for the affected bird. 

Poultry producers need to control the performance and welfare issues caused by subclinical coccidiosisPoultry producers need to control the performance and welfare issues caused by subclinical coccidiosis

Understanding and managing coccidiosis in poultry

However, today, subclinical coccidiosis accounts for even more of production losses due to intestinal cells injuries: lower body weights, higher feed conversion rates, lack of flock uniformity, failures on skin pigmentation and, at the end mortality. Variation in the supply and quality of animal feed exacerbates the issue and compromises farm profitability even more. To tackle this challenge, we need to understand the basics of coccidiosis control in poultry and what options producers have to manage coccidiosis risks.

From Eimeria infection to disease

Coccidiosis is a disease caused by protozoan parasites, mainly of the genus Eimeria, that are located in the small and large intestines. Being very resistant and highly contagious, these protozoa are easily transmitted by various routes (via feed, litter, water, soil, material, insects, and wild animals).

Coccidia are present in all livestock species. However, the infection is particularly severe in poultry. The health consequences can be significant: loss of appetite, reduction in feed intake, increased FCR, enteritis, hemorrhagic diarrhea, and mortality. The most common species of Eimeria in broilers are: E. acervulina, E. mitis, E. maxima, E. brunetti, E. necatrix, E. praecox, and E. tenella. They are widely found in broiler productions across the globe (McDougall & Reid, 1991).

Sporulated oocyst of Eimeria maxima and E. Acervulina Figure 1: Sporulated oocyst of Eimeria maxima and E. Acervulina (40 x)

The pathogenesis of infection varies from mild to severe and is largely dependent on the magnitude of infection. Coccidiosis outbreaks are related to multiple factors that, together, promote a severe infestation in the farm.

Within poultry, the highest economic impact is in broilers, where the most common species of Eimeria are E. acervulina, E. maxima, E. tenella and E. necatrix, which all show high virulence. However, pathogenicity is influenced by host genetics, nutritional factors, concurrent diseases, age of the host and the particular species of the Eimeria (Conway & McKenzie, 2007).

Interaction of factors that promote coccidia outbreaksFigure 2: Interaction of factors that promote coccidia outbreaks

The Eimeria infection starts with the ingestion of protozoa that are at a sporulated stage. Once inside the gut, the protozoa liberate the sporozoites. This infective form can get into enterocytes and then begin a massive reproduction, killing thousands of intestinal cells. (Olabode et al., 2020; Shivaramaiah et al., 2014)

Eimeria spp. life cycleFigure 3: Eimeria spp. life cycle

The reproduction potential depends on the coccidia species. E. acervulina, E. mitis and E. praecox have the highest reproduction rate. This characteristic is closely related to their short life cycle.

In broilers, coccidiosis usually occurs after 21 days of age. The infection spreads gradually from day 1 already, depending on species of Eimeria and their virulence. A typical progression of coccidiosis in broilers is shown in Figure 4.Typical development of a coccidia infection in relation to broiler feed phasesFigure 4: Typical development of a coccidia infection in relation to broiler feed phases

Coccidiosis control in poultry: Strategy guidelines

The intrinsic characteristics of coccidiosis makes this parasite unique and many times frustrating to control. Resistance to available coccidiostats makes this task even harder.  Good farm management, litter hygiene, and the use of control coccidiosis programs such as shuttle and rotation are functional measures to prevent clinical coccidiosis. Successful control strategies specifically recognize the importance of monitoring, use anticoccidial drugs wisely, and include vaccines where applicable.

Monitoring

The first step is to establish a strict monitoring program in all stages of production, including the feed mill. It is important to verify that therapeutics are included in the feed in an adequate form and quantity, and that the follow-up in the field takes place.

Field monitoring should be frequent and in line with the operation’s coccidiosis management program. Field monitoring is a complementary work that collates clinical, necropsy, and faeces findings to closely track the disease situation.

Coccidiosis control in poultry operations needs to include rigorous monitoringCoccidiosis control in poultry operations needs to include rigorous monitoring

Anticoccidial drugs

Since the middle of the 20th century, chemotherapeutic agents have offered the best way to control coccidia. However, unbridled use of anti-coccidial drugs and the emergence of the new resistant field strains of coccidia have made it increasingly challenging to control coccidiosis with commonly available coccidiostat drugs.

The coccidiostats have been classified in two groups: ionophores, molecules obtained from microbiological fermentation, and chemicals, synthetic compounds. The mode of action of ionophores is to interfere with the membrane ion exchange, killing the extracellular stages (sporozoites and or merozoites) as they expend energy to maintain the osmotic balance. Chemical compounds can have an anticoccidial effect even on extracellular and intracellular stages (Sumano López & Gutiérrez Olvera, 2005).

However, resistance development is limiting their effectiveness, and certain compounds cannot be used in older birds or in hot environments. Moreover, government regulations often include anti-coccidial drugs in bans on antibiotics use. This does not mean that these drugs are not crucial to controlling this disease, but it is important to use alternative tools: they help make a coccidiosis control program not only less dependent on anticoccidial drugs but also more robust.

Vaccines

There are two commercial kinds of coccidia vaccines; the first one uses natural strains. These Eimeria are selected from field outbreaks, show a medium pathogenicity, and allow for a controlled replication of a coccidia infection. The second kind of vaccines include attenuated strains; these are precocious strains and birds usually show low or no post-vaccinal reactions.

The management of coccidia vaccines is the principal challenge for using this tool to control coccidia. Special vaccination training is required at the hatchery, which then needs a follow-up on the farm. In the field, this follow-up and the alignment of all the protocols has proven challenging for many producers.

Managing coccidiosis in poultry: Next steps

The limitations chemotherapy and vaccines have led to a surge in the quest for effective  natural solutions. Recent research into plant-derived phytochemicals shows that these compounds have properties that make them an interesting tool against coccidiosis (cf. Cobaxin-Cárdenas, 2018). Knowledge, research, and technological developments are now ready to offer solutions that can be an effective part of coccidia control programs. These natural solutions create opportunities to make poultry production more sustainable by reducing dependency on harmful drugs.

References

Bafundo, K.W., L. Gomez, B. Lumpkins, G.F. Mathis, J.L. McNaughton, and I. Duerr. “Concurrent Use of Saponins and Live Coccidiosis Vaccines: The Influence of a Quillaja and Yucca Combination on Anticoccidial Effects and Performance Results of Coccidia-Vaccinated Broilers.” Poultry Science 100, no. 3 (2021): 100905. https://doi.org/10.1016/j.psj.2020.12.010.

Blake, Damer P., Jolene Knox, Ben Dehaeck, Ben Huntington, Thilak Rathinam, Venu Ravipati, Simeon Ayoade, et al. “Re-Calculating the Cost of Coccidiosis in Chickens.” Veterinary Research 51, no. 1 (September 14, 2020). https://doi.org/10.1186/s13567-020-00837-2.

Cobaxin-Cárdenas, Mayra E. “Natural Compounds as an Alternative to Control Farm Diseases: Avian Coccidiosis.” Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment, March 21, 2018. https://doi.org/10.5772/intechopen.72638.

Conway, Donal P., and M. Elizabeth McKenzie. Poultry Coccidiosis: Diagnostic and Testing Procedures. Ames, IA, IA: Blackwell Publishing, 2007.

McDougall, L. R., and W. M. Reid. “Coccidiosis.” Chapter. In Diseases of Poultry, edited by B. W. Calnek, H. W. Yoder, W. M. Reid, C. W. Beard, and H. J. Barnes. Ames, IA: Iowa State University Press, 1991.

Olabode, Victoria Bose, Dashe Yakubu Gunya, Umaru Mada Alsea, Tobias Peter Pwajok Choji, and Israel Joshua Barde. 2020. “Histopathological Lesions of Coccidiosis Natural Infestation in Chickens”. Asian Journal of Research in Animal and Veterinary Sciences 5 (2), 41-45. https://www.journalajravs.com/index.php/AJRAVS/article/view/30090.

Shivaramaiah, Chaitanya, John R. Barta, Xochitl Hernandez-Velasco, Guillermo Téllez, and Billy M. Hargis. “Coccidiosis: Recent Advancements in the Immunobiology of Eimeria Species, Preventive Measures, and the Importance of Vaccination as a Control Tool against These Apicomplexan Parasites.” Veterinary Medicine: Research and Reports 2014, no. 5 (April 28, 2014): 23–34. https://doi.org/10.2147/vmrr.s57839.

Sumano López, Héctor, and Gutiérrez Olvera Lilia. Farmacología Clínica En Aves Comerciales. México: UNAM, Departamento de Fisiología y Farmacología, 2005.




Hatchery management in ABR production

art77 header scaled

By T.J. Gaydos

Producing high-quality chicks is critical to the success of any broiler program, but it is even more important in an antibiotic-free (ABF) program. The hatchery is the perfect environment for the incubation of eggs and, consequently, bacteria and mold. This makes hatchery sanitation a very high priority in ABF production systems because of the inability to use antibiotics in the hatchery or later in production.

Chick quality can be divided into two categories:

  • microbiologic
  • chick vitality

The reality is many of the processes that impact these two categories are often intertwined but can be generally separated into

  • sanitation practices
  • setting/hatching practices

It is not helpful to set specific objective benchmarks for an individual hatchery without understanding its specific challenges. The hatchery manager must realize that the end product is a healthy, robust chick; therefore, benchmarks and numerical goals for the individual hatchery, breed, and flock age need to be established.

There are a host of measurements that can be performed and data that can be collected; however, it only makes sense to collect only information that will be used to make decisions. It is easy to over-collect and under-utilize data.

Hatchery sanitation

Bacterial contamination

Hatchery sanitation starts at the breeder farm. Eggs are a significant source of contamination in the hatchery; consequently, floor eggs should not be brought to the hatchery. If they must be hatched for egg flow needs, it is essential to at least segregate them from the regular egg flow throughout the process. It is imperative to send a clean egg pack to the hatchery (transport and store the eggs at proper temperatures and humidity). Once the eggs are at the hatchery, the focus is on proper storage, incubation, and hatching. 

Monitoring sanitation

The risk of multiplying bacteria in the hatchery is high. Hatchery equipment can be difficult to clean, there are sufficient nutrients to support microbial growth, and the environment is perfect for incubation. Developing a program to monitor the cleanliness of the hatchery is a critical step in managing sanitation. The whole hatchery must be regularly cleaned and disinfected, and the most effort should be spent on chick contact surfaces.

Egg flats must be clean and dry before returning to the breeder farm. Hatcher baskets must be clean and dry before eggs are transferred. The tray wash machine should use a detergent and disinfectant to remove and sanitize the trays (the water temperature should be 140oF). A disinfectant with residual efficacy should be used after the tray wash. Too low of a temperature will encourage bacterial growth, and too high a temperature can damage the baskets.

When using an in ovo vaccination system, it is essential to clean and disinfect the machine after every use and prepare it for the next transfer. Chick belts, counters, chick baskets, hatchers, and setters are all areas that can harbor pathogens. Wet areas are also at risk for harboring disease: wet bulb thermometers, humidification equipment, and tray washers. All these areas should be regularly checked for cleanliness by traditional microbiology or rapid ATP testing.

It is important to monitor the hatchery air quality on a regular basis to ensure the level of bacteria and fungi is not too high. This is most effectively accomplished by placing air plates in key locations for air movement such as clean hatchers and setters and their respective halls, and plenums. The areas where vaccines are stored, mixed, and prepared should be surgical suite clean. 

Hatching practices

Chick vitality

A high-quality, active chick is one of the keys to program success. The actual profile used to hatch that bird is a mixture of breeder flock profile, hatchery equipment, climate, and experience. When evaluating a hatchery and a hatching program, it is best to start at the endpoint and work backward.

Managing chick comfort in the holding room is vital to set the chicks up for success on the farm. The chicks will tell you if they are too hot or too cold and if they have too much or too little airflow. This is determined by experience and monitoring behavior.

Tracking chick rectal temperatures is a useful way to check comfort. Remember that a small animal can change their body temperature from ideal to hyper- or hypothermic extremely quickly. On average, 103.5oF is a good benchmark for chick internal temperature. Moving backward through the process, evaluate the vaccine spray cabinet to ensure chicks are getting the proper vaccines at the proper rate.

The next critical opportunity to monitor chick vitality is when chicks are being separated from hatch debris. The volume of chicks passing through the site allows for rapid evaluation of the flock. In this area, it is important to check for open navels, strings, red hocks, green chicks, dirty chicks, and general appearance and behavior.

Hatch debris

The egg should be pipped and broken almost exactly in half. The debris should have minimal meconium, yolk stains, and should not smell bad. Excess meconium is an indication that the hatch window is prolonged, and the chicks spent too much time in the machine before pull.

When eggshells are crushed in one’s hand they should break, but the membrane should remain intact. If the membrane also breaks, it is a sign that the chicks were potentially overheated, incubated too long, or humidity was too low. 

Chick yield

One of the most useful measures of the setting process is chick yield, which is the weight of the chick at hatch compared to the weight of the egg set. Chicks with a low yield were set with a high temperature or low humidity or were hatched for a long time before being removed from the hatcher. Chicks with a high chick yield are a result of the opposite: low temperature and high humidity incubation or did not spend enough time in the hatcher post-hatch. The ideal chick yield depends on the breed of chicken and the individual hatchery, but 67-68 % yield is a good benchmark.

Breakout

Analyzing hatch debris is a crucial tool for understanding setting and hatching efficiencies. Embryo mortality is variable but tends to follow a consistent pattern. The majority of embryo mortality is early (1-7 days), with little mortality in the middle (8-14 days), and the second increase in embryo mortality occurring from 15-18 days. Results should be recorded, and a standard developed for the hatchery. Deviations from this standard should be investigated.

When aiming to improve the data collection process, focus on building a program that prioritizes the most useful information. Breakouts and chick yields are two of the most meaningful tests to modify the hatching process. Sanitation checks and monitoring of disinfectant levels at critical sanitation steps are valuable to improve hatchery quality. When all the pieces come together, high quality egg pack, sanitation, and excellent hatchery management, the result is a high-quality chick ready to succeed on the farm.




Broiler breeder management in ABF production: 3 essential steps

CHICKEN Kueken Gruppe Mix WEB

By T.J. Gaydos

Broiler breeders are the basis for the egg supply of an integrated company. All the management details of raising broiler breeders are important and require attention. Raising breeders and managing for persistency of lay, peak, fertility, and egg handling are important for all production systems. These details become more important when managing their progeny without the use of antibiotics.

Management in an ABF system requires extra attention – especially egg handling and sanitation. With the inability to use antibiotics in the progeny, it is critical to not bring additional pathogens into the hatchery on or in dirty eggs. A clean, well-managed egg pack will improve performance and animal welfare and significantly reduce seven-day mortality and the risk of foodborne illness.

1.      Cleanliness in the broiler breeder house and egg room

Managing egg cleanliness starts in the broiler breeder house before the first egg is laid. The house needs to be cleaned between flocks; at a minimum, water lines and nest pads should be cleaned and sanitized. The egg handling equipment and egg room should also be cleaned and disinfected. Special attention should be paid to egg contact surfaces and places where water accumulates, such as refrigeration and humidification equipment. If the previous flock had any disease issues, the houses should be thoroughly cleaned and disinfected. Between flocks, pest control is critical to reduce disease pressure: flies, rodents, and darkling beetles should be the focus as they are well-documented transmitters of disease. When adding shavings back to the house, it is important to not overfill the house to ensure there is a step between the scratch and the nest and thus help reduce the amount of litter and feces tracked into the nests.

 

2.      Training the birds

Once new breeders are moved to the house, it is important to train the birds on their location and not let hens learn to sleep in the nests. As hens begin to lay, training them not to lay floor eggs is an essential part of a clean egg pack.

Ensuring there are no dark spots, that any floor eggs are picked up quickly, and the scratch is walked on a regular basis are all important parts of the training to lay in nests. The temptation to set floor eggs is high, especially visibly clean eggs; the best way to eliminate this temptation is to reduce the amount of floor eggs. Visibly clean floor or slat eggs typically contain several logs more bacteria than clean nest eggs. Intestinal health is important to decrease the likelihood of soiled eggs.

High quality feed ingredients should always be used in breeder diets and the electrolyte balance carefully monitored to reduce the risk of flushing.

3.      Handling the eggs

The egg is well evolved to prevent contamination of the chick. There are multiple layers of protection: cuticle, shell, outer and inner shell membranes, and albumen. The cuticle and shell must be protected to reduce contamination. When removing minimal visible contamination, it is important to damage as little of the cuticle as possible.

3.1 Removing dirt

Dry contamination should be scraped off with a fingernail or soft plastic scraper. Wet contamination should be removed with a clean paper towel or disinfectant wipe. When removing wet contamination every effort should be made to prevent cross contamination of a larger area of the egg. Eggs should not be buffed clean since this may push dust and bacteria into the pores of the egg, limiting gas exchange and increasing contamination risk.

Any significantly soiled egg should be discarded. It is not advised to wash eggs or wet eggs for disinfection.

Gentle handling of eggs is important to reduce the risk of micro-cracks in the shell, further increasing the risk of bacterial contamination and dehydration.

3.2 Egg temperature and humidity

When packing eggs, fill the buggies from the bottom to the top. This decreases the risk of heating already cooled eggs, potentially reducing embryo viability. If egg packing equipment is used, it is important to clean the machine regularly. Special focus should be paid on the suction cups and rollers since they are in direct contact with the eggs and are very hard to clean.

As eggs cool, a slight vacuum is produced that may draw any liquid on the surface into the egg. Every effort should be made to ensure that eggs do not get wet. If they become wet, it is imperative to allow them to dry before putting them in the cooler. Egg trays and racks should be thoroughly cleaned and disinfected at the hatchery before returning them to the farm. Dirty or wet trays should not be used, they should either be thoroughly cleaned and disinfected on the farm or returned to the hatchery for cleaning.

Managing cooler temperatures is vital for hatchability. Additionally, it is important that eggs are continuously getting cooler to reduce the risk of sweating eggs. The hatchery egg cooler should be 15ºC or 59ºF, the farm egg cooler 2ºC warmer or 17ºC, and the egg transport truck in the middle (~16ºC). The humidity during storage should be 70-80% RH. Humidification devices are a high risk for microbial contamination; therefore, ensure that they are cleaned and disinfected frequently, and any mist is not directed towards the egg pack.

Conclusion

Appropriate management of the egg supply is key for any poultry company. The need for increased cleaning and disinfection is amplified in an ABF system. Clean and properly handled eggs are a fundamental step to producing high quality chicks.




ABF poultry production: How to keep coccidiosis in check

art74 header

By T.J. Gaydos

Coccidiosis control consists of programs, including ionophores, chemical coccidiostats, vaccines, and gut health-promoting natural products. Sometimes, these are combined (Noack, Chapman, and Selzer, 2019). Antibiotic-free (ABF) production requires new approaches – this article will look at how different solutions can be successfully implemented.

Meticulous coccidiosis management in ABF productions is crucial to safeguard animal welfare and performance.

What makes up a successful coccidiosis control program for ABF systems?

When managing a poultry program without antibiotics in the U.S., where ionophores are classified as antibiotics, the only available tools for coccidiosis control are vaccines, chemical coccidiostats, and natural products supporting gut health during challenging times.

  • The use of a chemical-only program is possible and often successful. Still, the choice of chemicals is limited, and the risk of building resistance must always be considered and managed through the appropriate rotation of active ingredients.
  • A second option is a coccidiosis vaccine with or without chemical coccidiostats. This is an excellent long-term option but the most difficult to manage.
  • A third effective option is a coccidiosis vaccine combined with the use of phytomolecule-based solutions contributing to the coccidiosis control program and delivering improved gut health.

What do most ABF newcomers do?

When making the transition from conventional to ABF production, broiler producers usually try:

  1. A chemical coccidiostat program,
  2. A bio-shuttle program: a coccidiosis vaccine, followed by a chemical coccidiostat, or
  3. Phytomolecule-based feed additives; typically, in combination with a coccidiosis vaccine or chemical program.

When the operation can master managing the coccidiosis vaccine and other husbandry challenges, the optimal solution is the combination of vaccination and phytomolecule-based feed supplements.

Why a combination?

A coccidiosis control program based on vaccination begins in the hatchery and continues through live production. Its success relies on many moving parts working in sync to produce the desired result of early uniform immunity to coccidiosis. Phytomolecule-based products additionally can support the animals in terms of gut health, oxidative balance, and immunity.

Vaccination success depends on attention to detail

If one decides to use vaccination for coccidiosis control, the following points must be considered to achieve high effectiveness.

Vaccine storage – the right temperature is crucial

Proper storage is essential for all vaccines. In general, coccidiosis vaccines should be stored between 2° to 7°C (35° to 45°F), but optimally, one asks the vaccine manufacturer for product-specific directions. Coccidiosis vaccines must not freeze. Freezing will severely damage or kill the oocysts, thus significantly reducing efficacy. It is also important to ensure that there are no cold spots in the refrigerator. Hence, vaccines should be stored in the middle of a shelf with air space around or in a foam-insulated place inside the fridge.

For monitoring the temperature, an analog high/low thermometer should be placed by the vaccine. The temperature should be recorded, and the thermometer reset daily. To minimize the risk of administering a frozen vaccine, it is recommended to put freeze indicators outside the boxes. If, despite all these measures, vaccines are suspected to have frozen, segregate the suspect product and contact the supplier for assistance.

Vaccine administration – mind an even distribution for all steps

The goal of vaccination is to build early and uniform immunity in all chickens, which is achieved by exposure to repeated cycles of coccidia replication in the intestine.

1.      Even distribution of the oocysts in the vaccine

It is essential to ensure that all oocysts flow from the bottle into the distribution jug when mixing the vaccine. The oocysts should be well-mixed and then must be constantly agitated to remain suspended in solution. The most common way to suspend oocysts is to use a small air pump to bubble the vaccine, creating turbulence.

2.      Even spraying of the vaccine onto the chicks

The next important step is to ensure that the chicks are evenly covered with the vaccine. When in doubt, run a chick box through the spray cabinet, collect the nozzles’ output, and measure the volume sprayed. To check the spray pattern, set a piece of clear hard plastic on top of the pegs in the chick basket and run the box through the spray cabinet. Evaluate the spray pattern on the plastic sheet and adjust as needed to ensure an even spraying. The spray pattern should be checked every time a new batch of vaccines is mixed.

Even spraying of coccidiosis vaccine can be easily tested using a clear plastic sheet.

3.      A similar amount of vaccine intake for all chicks

Coccidiosis vaccines must be preened and consumed to be effective. Adding a dye to the spray compatible with the vaccine will help stimulate the birds to preen. A well-lit and temperature-controlled processing and holding area will promote preening behavior. Tongues should be checked regularly to ensure that chicks consume the vaccine. At a minimum, check ten birds per basket and ten baskets per lot. More than 98% of birds should have evidence of vaccine consumption within 10-15 minutes post-vaccination.

Chick vitality is a critical success factor in an ABF program. Healthy chicks perform better in the field. In the context of a coccidiosis vaccine, they are more apt to preen, more likely to consume food and water quickly, and less likely to excessively pick at the litter.

A dye helps to evaluate if the coccidiosis vaccine was evenly sprayed across all chicks.

Uniform immunity through effective farm management

A successful coccidiosis vaccination program achieves uniform immunity against coccidia, which slowly develops from the hatchery. For this purpose, birds must be evenly spread throughout all stages of growth to seed the litter evenly with oocysts and to have even coccidiosis pressure in all parts of the house.

Time management allows even immunization

Birds should be turned out from half to full house between 9 and 11 days. This schedule allows the birds to excrete the first round of oocysts and for the oocysts to sporulate and be consumed by the birds.

The birds need to be moved to full house before they secrete the second round of oocysts. This will allow the oocysts to be spread uniformly in the house. Coccidia reproduce exponentially and the second round of oocyst production is significantly more numerous than the first.

It is possible to brood birds in the full house while on coccidiosis vaccine. Still, it is complicated to manage the coccidiosis cycling because bird density is generally too low to ensure that birds effectively cycle the vaccine strain oocysts.

Litter consistency is decisive

Litter management is essential to control the cycling of coccidiosis because one stage of the life cycle of coccidia occurs in the litter. Litter moisture of 25% is ideal. When litter is squeezed in a fist, it should briefly form and immediately break apart. If it stays formed, it is too wet. If the litter is free-flowing and dusty, it is too dry for adequate sporulation.

Non-antibiotic supplements support coccidiosis management

Managing coccidiosis cycling requires attention to detail and is probably the most challenging part of adequately managing an ABF program. All farms are not equal and need to be supervised according to their specific needs. The use of non-antibiotic feed and water additives can help control coccidiosis and other enteric diseases.

Some non-antibiotic supplements have anticoccidial (e.g. amprolium, saponins, tannins) or antibacterial (e.g., plant extracts) activity. When used correctly, these may improve the performance of birds in a vaccination or chemical-based coccidiosis control program. Other non-antibiotic alternatives such as probiotics, prebiotics, organic acids, and yeast cell wall extracts have been shown to improve gastrointestinal health. The combination of excellent animal husbandry and the correct feed/water additive program is the key to success.

References

Noack, Sandra, H. David Chapman, and Paul M. Selzer. “Anticoccidial Drugs of the Livestock Industry.” Parasitology Research 118, no. 7 (2019): 2009–26. https://doi.org/10.1007/s00436-019-06343-5.




How to achieve sustainable antibiotic-free broiler production

art64 new header photo scaled

by Predrag Persak, Regional Technical Manager North Europe, EW Nutrition

The main sustainability challenge for broiler production lies in securing enough high-quality, nutritious, safe, and readily available food at a reasonable cost. At times, feed ingredients have to be included that are not nutritionally ideal and might compromise one’s broilers’ health and wellbeing. However, counteracting this threat with prophylactic antibiotics is not acceptable: We must minimize the use of antibiotics to mitigate antimicrobial resistance. The way forward is to go beyond static and linear nutritional value-to-price thinking. A dynamic nutritional strategy focusing on the interdependencies between ingredients, gut, microbiome, and digestion, enables sustainable ABF broiler production.

Sustainable ABF broiler production requires a dynamic, gut health-oriented nutritional strategy

Sustainability vs. ABF production – is there a trade-off?

The United Nations’ 1987 Brundtland report offers a clear definition of sustainability as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” “Ability” includes the availability of resources – and in broiler production, which is one of the most efficient livestock productions, resources have always been a top priority. As a constantly evolving industry, broiler production has been quick to adopt sustainability into its management strategies. The use of the resource that is antibiotics, however, poses particular challenges.

Humans and animals depend on antibiotics to fight microbial infections. It is essential to maintain their efficacy so that future generations can lead healthy lives. Antibiotic efficacy is under threat from the development of antimicrobial resistance, which emerges from overuse and misuse in both human and veterinary medicine. Across the globe, broilers are still raised with the assistance of antibiotics. Either for disease therapy, to prevent disease occurrence, and still, in some parts of the world, to enhance performance. Driven by regulatory and consumer demands, broiler production with minimal or no use of antibiotics is rapidly gaining importance.

The challenges of antibiotic-free broiler production

ABF systems encounter numerous challenges since production requirements change drastically. Stock density must be lower; it takes longer to reach the desired weight; and more feed is needed to produce the same amount, with a higher risk of morbidity and mortality (Cervantes, 2015). The latter can result in more birds needing treatment with medically important antimicrobial drugs. All those challenges need to be overcome by adopting suitable strategies related to nutrition, genetics, management, biosecurity, welfare, and food safety.

As animal nutritionists, our focus lies on nutrition, feed, feed materials, additives, feed processing, feeding, and their (positive or negative) influence on the sustainability of ABF broiler production. However, we cannot look at these dimensions of production as a separate process. They are linked in the whole food chain and are affected by changes that happen in other related parts. An obvious example is feed production, which has an enormous impact on the overall sustainability of ABF broiler production:

  • Due to raw material shortages, diets are becoming ever more complex, containing more single feed ingredients. For some of them, we need a better understanding of their impact on ABF broiler production (e.g., sunflower, rapeseed, beans, lupins).
  • The nutritional composition of raw materials changes due to limitations in fertilizer use, and variability within the same raw material group is expected to increase.
  • New food waste-reducing feed materials can enhance feed security but also require nutritional profiling to integrate them into diets.
  • Local feed material production in humid and warm environments can introduce various pathogens into the feed/food chain.
  • Increases in known and the emergence of new antinutrients and feed components that impair animal health, performance, and feed efficiency.
  • Sustainability-driven pesticide reduction raises concerns about mycotoxins contaminating feed ingredients.
  • Nutrient reduction to support gut health and, primarily, lower the excretion of nitrogen and phosphorous, negatively affects growth, nutritional standards, and the ability to freely select feed materials to include in broiler diets.
  • The value (of which price is also part) of raw materials will be compromised, due to availability and nutritional variability.

Mycotoxin contaminated-feed can damage production animals' performance, health, and welfareMycotoxin contaminated-feed can damage production animals’ performance, health, and welfare

When striving for a sustainable ABF broiler production approach, the possibility for errors becomes higher, while the error margin becomes smaller. The solution lies in helping the animals to mitigate the impact of stressors by focusing on the interaction of ingredients, gut, microbiome, and digestion. It is a holistic approach centered on gut health. Keeping the intestines BEAUTIful will help you produce in challenging conditions without the use of antimicrobials.

Keep the broiler gut BEAUTIful and resilient to stress

The BEAUTIful formula captures the six areas producers need to target for supporting broiler gut health:BEAUTI stands for barrier, enzymatic digestion, absorption, united microbiome, transport, and immunity

Barrier

If it’s working correctly, the effective gatekeeper knows what gets in and what stays out. When the barrier function is compromised due to stress, pathogens can cause infections, disrupt health, and negatively impact broiler immunity. Necrotic enteritis, femoral head necrosis, and bacterial chondronecrosis with osteomyelitis (BCO) are common diseases that affect today’s broiler production (Wideman, 2015). As the source of nutrients, feed serves as a modulator of various physiological functions in the intestinal tract, including intestinal barrier function.

Enzymatic digestion

The gut is where endogenous and exogenous enzymes perform their hydrolysis functions to break down complex nutrients into the parts that can be used either by the intestinal tissue itself or for the whole animal. One part of hybrid enzymatic digestion is the fermentation by commensal microbes, in which complex materials form end-products of high biological values (such as short-chain fatty acids, SCFA).

Absorption

Maintaining the gut’s resorptive capacity is essential to secure the total intake of digested nutrients. Otherwise, pathogenic bacteria might use the excess nutrients to grow, form toxins, and affect the birds’ health and productivity.

United microbiome

The intestine of a broiler chicken is colonized by more than 800 species of bacteria and other inhabitants, such as viruses and simple organisms that are still unknown. By competitive exclusion and secretion of bacteriocins (volatile fatty acids, organic acids, and natural antimicrobial compounds), commensal bacteria keep the host safe from an overgrowth of dangerous bacteria (e.g., Salmonella, Campylobacter, and Clostridium perfringens). The fine-tuned diversity in the intestinal flora and balance in all interactions between it, the host, and the ingesta are needed for birds to stay healthy and perform well.

Transport

Birds’ digestive tract volumes are smaller than those of mammals with similar body weight. This means that they achieve more efficient nutrient digestion in a shorter retention time, averaging between 5 and 6 hours. Passing the small intestine usually takes around 3 hours, of which 1 hour is spent in the duodenum and jejunum. Transport times are affected by the feeding system and the extent to which material enters the caeca. Reflux of material from the distal to the proximal small intestine is an important feature that helps digestion and maintenance of a healthy gut.

Immunity

The intestinal microbiota is critically important for the development and stimulation of the immune system. The intestine is the key immunological organ, comprised of myeloid and lymphoid cells, and a site for producing many immune cell types needed to initiate and mediate immunity. Together with the microbiome, dendritic cells induce antigen-specific responses and form immunoglobulin A, which works in the intestinal lumen.

Natural gut health solution for sustainable ABF broiler production

In practice, supporting broiler gut health requires a holistic approach that includes natural feed additive solutions. Phytomolecules are compounds that certain plants develop as defenses mechanisms. Phytomolecules-based solutions should feature prominently in sustainable ABF broiler production approaches due to their advantageous properties:

Enhance digestion, manage variability

Sustainability necessitates efficient resource utilization. Digestion support needs to be a priority to use the available feed in its entirety. This is particularly important if antibiotics use needs to be minimized: a maximum of nutrients should be utilized by the animal; otherwise, they feed potentially harmful bacteria, necessitating antibiotic treatments. Enhancing digestibility is the focus when we are dealing with variable feed materials or feed changes that represent stress to the animal. Selected phytomolecules have proven efficient at improving performance due to enhanced digestion (Zhai et al. 2018).

Work on microbiome and pathogens

The antimicrobial activity of certain phytomolecules can prevent the overgrowth of pathogens in the gastrointestinal tract, thereby reducing dysbacteriosis (Liu et al., 2018) and specific diseases such as necrotic enteritis. Studies on broilers show that they also reduce the adhesion of pathogens to the wall of the intestine. Certain phytomolecules even possess antimicrobial characteristics against antibiotic-resistant pathogens.

Keep gut integrity

Phytomolecules help maintain tight junction integrity, thus preventing leaky gut (Li et al., 2009). As a result, the potential flow of bacteria and their toxins from the gut lumen into the bloodstream is mitigated. Their properties thus make phytomolecules a promising alternative to the non-therapeutic use of antibiotics. 

Trial results: Phytomolecules enhance broiler gut health

To test the efficacy of phytomolecules, we conducted a large-scale field study in Brazil, under practical conditions. The focus was on growth performance, and no growth-promoting antibiotics were used. Lasting 5 months, the trial involved more than 2 million broilers. The birds were divided into a control and a trial group, with two repetitions per group. Both groups were fed the standard feed of the farm. The trial group additionally received 100g of Activo per MT in its finisher feed for 3 weeks. The study clearly shows that Activo supplementation improves performance parameters (daily weight gain, average total gain, and improved feed efficiency), which resulted in a higher production efficiency factor (PEF):

  • Activo groups had a 3 % higher average daily weight gain and reached their slaughtering age earlier
  • The final weight of Activo groups was about 2.5 % higher than in the control group
  • With a 2 points better feed conversion, the animals of the Activo group achieved a 13.67 points higher PEF

Figure 1: Broiler performance results, Activo vs. non-supplemented control group Figure 1: Broiler performance results, Activo vs. non-supplemented control group 

Conclusion

Antibiotic-free broiler production is a challenging endeavor: producers need to maintain animal welfare and keep up efficiency while making farming profitable. Over time, these challenges will affect producers even more as sustainability requirements increase across all parts of the broiler production chain. On top of that, coccidiostats, which are essential for efficient broiler production, are increasingly being questioned, which will require concerted research into feed additive solutions.

To make sustainable ABF broiler production the norm, it is unavoidable to adopt suitable strategies related to nutrition, genetics, management, biosecurity, welfare, and food safety. Effective, scientifically and practically proven tools already exist: Thanks to their positive impact on intestinal health, phytomolecules reliably support sustainable broiler production without antibiotics.


References

Cervantes, Hector M. “Antibiotic-Free Poultry Production: Is It Sustainable?” Journal of Applied Poultry Research 24, no. 1 (2015): 91–97. https://doi.org/10.3382/japr/pfv006.

Li, Y., H.Y. Cai, G.H. Liu, X.L. Dong, W.H. Chang, S. Zhang, A.J. Zheng, and G.L. Chen. “Effects of Stress Simulated by Dexamethasone on Jejunal Glucose Transport in Broilers.” Poultry Science 88, no. 2 (2009): 330–37. https://doi.org/10.3382/ps.2008-00257.

Liu, ShuDong, MinHo Song, Won Yun, JiHwan Lee, ChangHee Lee, WooGi Kwak, NamSoo Han, HyeunBum Kim, and JinHo Cho. “Effects of Oral Administration of Different Dosages of Carvacrol Essential Oils on Intestinal Barrier Function in Broilers.” Journal of Animal Physiology and Animal Nutrition 102, no. 5 (2018): 1257–65. https://doi.org/10.1111/jpn.12944.

Wideman, Robert F. “Bacterial Chondronecrosis with Osteomyelitis and Lameness in Broilers: a Review.” Poultry Science 95, no. 2 (2016): 325–44. https://doi.org/10.3382/ps/pev320.

Zhai, Hengxiao, Hong Liu, Shikui Wang, Jinlong Wu, and Anna-Maria Kluenter. “Potential of Essential Oils for Poultry and Pigs.” Animal Nutrition 4, no. 2 (2018): 179–86. https://doi.org/10.1016/j.aninu.2018.01.005.