Keep coccidiosis under control – naturally!

header image poultry broiler shutterstock 1733838041

By Dr. Inge Heinzl, Editor, Madalina Diaconu, Produt Manager Pretect D, and Dr. Ajay Awati, Global Category Manager Gut Health & Nutrition, EW Nutrition

Often you have an extensive coccidiosis control program in place. You don’t observe any clinical signs of coccidiosis. However, at the end of the cycle, you record significantly lower body weight and a higher FCR. There is a high probability that your animals have subclinical coccidiosis. This article digs deeper into understanding why birds don’t perform as they should, why subclinical coccidiosis occurs on the farm, and why drug resistance is an important factor.

Subclinical coccidiosis – a silent enemy

Clinical coccidiosis is clearly characterized by severe diarrhea, high mortality rates, reduced feed/water intake, and weight loss. By contrast, subclinical Coccidiosis does not display any visual signs and often remains undetected.

According to De Gussem (2008), the damages caused by subclinical coccidiosis can reach up to 70% of the total cost of coccidiosis control treatments, ranging from US$ 2.3 billion to US$ 13.8 billion/year in 2020 worldwide (De Gussem, 2008; Ferreira da Cunha, 2020; Blake et al., 2020).

Monitoring coccidiosis occurrence on the farm

There are several tools available to evaluate the level of infection. The most common ones are:

Lesion scoring – is used to evaluate the damages caused by coccidiosis in the intestinal tract. Lesion scoring gives insight into the severity of the infection. Furthermore, based on the location of lesions in the GI tract, it is possible to determine the plausible Eimeria spp. responsible for the infection.

OPG (Oocyst per gram) – the number of oocysts per gram of feces indicates the level of shedding of oocysts in the manure, litter, and, eventually, in the farm environment. OPG levels may not give the exact severity of the infection in the bird but certainly provide a clear idea of its likely spread within the flock.

Ways to deal with coccidiosis on the farm

Different tools are widely used to prevent and treat coccidiosis:

Anticoccidials:                  Chemicals, ionophores

Vaccination:                       Natural strains, attenuated strains

Bio-shuttle:                        Vaccine + ionophore

Natural anticoccidials:   Phytomolecules

These coccidiosis control programs are used depending on the farm history and the severity of the infection. Traditionally, treatment was heavily dependent on chemicals and ionophores. However, rampant and unbridled use of ionophores leads to resistance in Eimeria spp. on the farm, the failure of the control program, and significant performance losses, with high mortality due to coccidiosis. Therefore, the tools mentioned above are inserted in rotation or shuttle programs to minimize the generation of resistances. In a rotation program, the anticoccidial changes from flock to flock. In a shuttle program, the anticoccidial changes within one cycle according to the feed (Chapman, 1997).

However, this strategy is often not 100% effective due to a lack of diversity and overuse of certain tools within programs. The rigorous financial optimization of the program leads to the use of cost-effective but marginally effective solutions. These factors over the period weaken the program, which seems to work well but leads to resistance to anticoccidial drugs and sets up subclinical coccidiosis.

Resistances have been reported in the US (Jeffers, 1974, McDougald, 1981), South America (McDougald, 1987; Kawazoe and Di Fabio, 1994), Europe (Peeters et al., 1994; Bedrník et al., 1989; Stephan et al., 1997), Asia (Lan et al., 2017; Arabkhazaeli et al., 2013), and Africa (Ojimelukwe et al., 2018). Chapman and co-workers (1997) even stated that resistances were documented for all anticoccidial drugs employed at this time, and new products have not been approved for decades.

Resistance and subclinical coccidiosis can be approached naturally

When an anticoccidial has lost its effectiveness due to excessive use, some resistant coccidia survive. They can cause a mild course of the disease, subclinical coccidiosis, driving the costs high. Reducing the occurrence of resistance and subclinical coccidiosis can significantly decrease the expenses of coccidiosis control programs and, eventually, the cost of production.

Increasing consumer pressure to reduce the overall usage of drugs in animal production has driven innovation efforts to find natural solutions that can be effectively used within coccidiosis control programs. However, this shift was not easy for the producers. Lack of reliable data, poor understanding of the mode of action, lack of quality optimization, and unsubstantiated claims led to the failure of many earlier-generation natural solutions.

However, the consumer-driven movement to find natural solutions to animal gut health issues has recently led to relentless innovation in this area. Knowledge, research, and technological developments are now ready to offer solutions that can be an effective part of the coccidia control program and open opportunities to make poultry production even more sustainable by reducing drug dependency.

For centuries, phytomolecules have been used for their medicinal properties and effects on the health and well-being of animals and humans. In the case of coccidiosis, tannins and saponins have been proven to support animals in coping with this disease. Tannic acids and tannic acid extracts strengthen the intestinal barrier by reducing oxidative stress and inflammation (Tonda et al., 2018). On the other hand, saponins lessen the shedding of oocysts, improve the lesion score, and, in the case of an acute infection, the occurrence of bloody diarrhea (Youssef et al., 2021).

These natural substances can be integrated into shuttle or rotation programs to reduce the use of anticoccidials and, therefore, minimize resistance development.

Pretect D: Coccidiosis programs can be strengthened naturally!

In an EU field trial conducted with more than 200 000 birds, Pretect D (a natural phytogenic-based product designed to increase the efficacy of coccidiosis control) was used in the shuttle program together with ionophores. The trial provided excellent results on zootechnical performance (figures 1-4).

Figures 1-4: Zootechnical performance of broilers with Pretect D included in the shuttle program

Trials show that Pretect D supports the efficiency of coccidiosis control programs by impairing the Eimeria development cycle when used in combination with vaccines, ionophores, and chemicals as part of the shuttle or rotation program:

  • It protects the epithelium from inflammatory and oxidative damage
  • It promotes the restoration of the mucosal barrier function

Table 1 exemplifies one way of including a natural solution (Pretect D) in actual coccidiosis control programs.

Table 1: Exemple of including Pretect D into coccidiosis control programs

Natural solutions suit both farmers and consumers

With phytomolecules partly replacing anticoccidials in rotation or shuttle programs, the use of anticoccidials in poultry production can be decreased. On the one hand, this answers consumers’ demand; on the other hand, it leads to a push-back of resistances in the long run. The returning effectiveness of the anticoccidials can reduce subclinical coccidiosis, leading to lower costs spent on this disease and a higher profit for the farmers.

References:

Arabkhazaeli, F., M. Modrisanei, S. Nabian, B. Mansoori, and A. Madani. “Evaluating the Resistance of Eimeria spp. Field Isolates to Anticoccidial Drugs Using Three Different Indices.” Iran J Parasitol. 8, no. 2 (2013): 234–41.

Bedrník, P., P. Jurkovič, J. Kučera, and A. Firmanová. “Cross Resistance to the IONOPHOROUS Polyether Anticoccidial Drugs IN Eimeria Tenella Isolates from Czechoslovakia.” Poultry Science 68, no. 1 (1989): 89–93. https://doi.org/10.3382/ps.0680089

Blake, Damer P., Jolene Knox, Ben Dehaeck, Ben Huntington, Thilak Rathinam, Venu Ravipati, Simeon Ayoade, et al. “Re-Calculating the Cost of Coccidiosis in Chickens.” Veterinary Research 51, no. 1 (2020). https://doi.org/10.1186/s13567-020-00837-2

Chapman, H. D. “Biochemical, Genetic and Applied Aspects of Drug Resistance in Eimeria Parasites of the Fowl.” Avian Pathology 26, no. 2 (1997): 221–44. https://doi.org/10.1080/03079459708419208.

De Gussem, M., and S. Huang. “The Control of Coccidiosis in Poultry.” International Poultry Production 16, no. 5 (2008): 7–9.

Ferreira da Cunha, Anderson, Elizabeth Santin, and Michael Kogut. “Editorial: Poultry Coccidiosis: Strategies to Understand and Control.” Frontiers in Veterinary Science 7 (2020). https://doi.org/10.3389/fvets.2020.599322

Jeffers, T. K. “Eimeria Acervulina and E. Maxima: Incidence and Anticoccidial Drug Resistance of Isolants in Major Broiler-Producing Areas.” Avian Diseases 18, no. 3 (1974): 331. https://doi.org/10.2307/1589101

Kawazoe, Urara, and J. Di Fabio. “Resistance to DICLAZURIL in Field Isolates OfEimeriaspecies Obtained from Commercial BROILER Flocks in Brazil.” Avian Pathology 23, no. 2 (1994): 305–11. https://doi.org/10.1080/03079459408418998

Lan, L.-H., B.-B. Sun, B.-X.-Z. Zuo, X.-Q. Chen, and A.-F. Du. “Prevalence and Drug Resistance of Avian Eimeria Species in Broiler Chicken Farms of Zhejiang PROVINCE, CHINA.” Poultry Science 96, no. 7 (2017): 2104–9. https://doi.org/10.3382/ps/pew499

McDougald, L. R. “Anticoccidial Drug Resistance in the Southeastern United STATES: POLYETHER, IONOPHOROUS Drugs.” Avian Diseases 25, no. 3 (1981): 600. https://doi.org/10.2307/1589990

McDougald, Larry R., Jose Maria Silva, Juan Solis, and Mauricio Braga. “A Survey of Sensitivity to Anticoccidial Drugs in 60 Isolates of Coccidia from Broiler Chickens in Brazil and Argentina.” Avian Diseases 31, no. 2 (1987): 287. https://doi.org/10.2307/1590874

Ojimelukwe, Agatha E., Deborah E. Emedhem, Gabriel O. Agu, Florence O. Nduka, and Austin E. Abah. “Populations of Eimeria Tenella Express Resistance to Commonly Used Anticoccidial Drugs in Southern Nigeria.” International Journal of Veterinary Science and Medicine 6, no. 2 (2018): 192–200. https://doi.org/10.1016/j.ijvsm.2018.06.003

Peeters, Johan E., Jef Derijcke, Mark Verlinden, and Ria Wyffels. “Sensitivity of AVIAN EIMERIA Spp. to Seven Chemical and Five Ionophore Anticoccidials in Five Belgian INTEGRATED Broiler Operations.” Avian Diseases 38, no. 3 (1994): 483. https://doi.org/10.2307/1592069

Stephan, B., M. Rommel, A. Daugschies, and A. Haberkorn. “Studies of Resistance to Anticoccidials IN Eimeria Field Isolates and Pure Eimeria Strains.” Veterinary Parasitology 69, no. 1-2 (1997): 19–29. https://doi.org/10.1016/s0304-4017(96)01096-5

Tonda, RM, J.K. Rubach, B.S. Lumpkins, G.F. Mathis, and M.J. Poss. “Effects of Tannic Acid Extract on Performance and Intestinal Health of Broiler Chickens Following Coccidiosis Vaccination and/or a Mixed-Species Eimeria Challenge.” Poultry Science 97, no. 9 (2018): 3031–42. https://doi.org/10.3382/ps/pey158

Youssef, Ibrahim M., Klaus Männer, and Jürgen Zentek. “Effect of Essential Oils or Saponins Alone or in Combination on Productive Performance, Intestinal Morphology and Digestive Enzymes’ Activity of Broiler Chickens.” Journal of Animal Physiology and Animal Nutrition 105, no. 1 (2020): 99–107. https://doi.org/10.1111/jpn.13431




How to mitigate quality degradation in broiler breasts

white chickens farm

By Dr. Inge Heinzl, Editor, and Dr. Ajay Bhoyar, Global Technical Manager Poultry, EW Nutrition

Faster growth of breast muscle in broilers may lead to increased incidences of different types of muscle degeneration. Downgrading the affected breast fillets results in high economic losses for the poultry meat industry.

The article discusses the three important myopathies impairing the breast muscles, their impact on the meat industry, influencing factors, and how to cope with these challenges.

Muscle degeneration heaps up with faster broiler growth

According to Sirri and co-workers (2016), breast fillets from broilers with 3.9 kg live weight carry a higher risk for myopathic lesions. Studies in different countries revealed that myopathies in broilers are not neglectable:

Country Myopathy Number of breasts examined Conditions Occurrence Reference
Italy WS 28,000 broilers commercial 12 % Petracci et al., 2013
Italy WS 70 flocks; always 500 of 35,000 breasts randomly examined commercial 43%, with 6.2% considered severe Lorenzi et al., 2014
Italy WS 57 flocks commercial 70.2 % (medium)-82.5 % (heavy-weight) Russo et al., 2015
Italy WS 16,000 samples commercial 9 % moderate22 % severe Petracci in Baldi et al., 2020
Brazil WS 25,520 commercial 10 % Ferreira et al., 2014
USA WS 960 (week 6)+ 960 (week 9) experimental Score 1: 78.4 % (wk 6)
29.9 % (wk 9)
Score 2: 14.0 % (wk 6)
53.9 % (wk 9)
Score 3:0 % (wk 6)
15.1 % (wk 9)
Kuttapan et al., 2017
Brazil WB commercial 10-20 % Carvalho, in Petracci et al., 2019
Italy WB 16,000 samples commercial 42 % moderate
18 % severe
Petracci, in Baldi et al., 2020
China WB 1,135 breast fillets commercial 61.9% Xing et al., 2020
USA WB 960 (week 6)+ 960 (week 9) experimental Score 1: 32.5 % (wk 6)
33.2 % (wk 9)
Score 2: 7.9 % (wk 6)
36 % (wk 9)
Score 3: 1.96 % (wk 6)
15.6 % (wk 9)
Kuttapan et al., 2017
Italy SM 16,000 samples commercial 4 % moderate
17 % severe
Petracci in Baldi et al., 2020
Brazil SM 5,580 samples commercial 10 % Montagna et al., 2019

 

Figure 1: Different myopathies in broilers (R. Baileys)

As the appearance of products is one of the most important arguments for the purchase decision, these myopathies are serious issues; the downgrading of the breast quality results in a lower reward for the producer. Kuttapan et al. (2016) estimated that 90 % of the broilers are affected by wooden breast and white striping (see below), causing about $200 million to $1 billion of economic losses to the U.S. poultry industry per year.

Wooden Breast (WB), a result of the proliferation of connective tissues

The muscle affected by the wooden breast is bulging and hard, is covered with clear, viscous fluid, and shows petechiae (see figure 2). The myopathy of the pectoralis major is “pale expansive areas of substantial hardness accompanied by white striation” (Kuttapan, 2016; Huang and Ahn, 2018; Sihvo et al., 2013). It is characterized by microscopically visible polyphasic myodegenerations with fibrosis in the chronic phase. At approximately two weeks of age, it appears as a focal lesion but then develops as a widespread fibrotic injury (Papah et al., 2017). WB can be detected by palpating the breast of the live bird.

Figure 2: Comparison of a severe wooden breast (on the left) and a healthy breast fillet (on the right)

Source: Kuttapan et al., 2016

According to Kuttapan et al. (2016), the anomaly is caused by circulatory insufficiency and increased oxidative stress resulting in damage and degeneration. Its occurrence rose with increasing growth and slaughter weights of the birds. Wooden breast is more common in male than female broilers as they show an increased expression of genes related to the proliferation of connective tissues (Baldi et al., 2021).

The hardness of the meat, a 1.2 – 1.3 % higher fat content (Soglia et al., 2016, Tasoniero et al., 2016), and the worse appearance lead to a degradation of the fillet quality (Kuttappan et al., 2012). The reduction in the water holding capacity of muscle results in toughness before and after cooking.

White Striping (WS), a result of fiber degeneration

The characteristics of WS are white striations parallel to the muscle fibers. A microscopic examination of these white stripes reveals an accumulation of lipids and a proliferation of connective tissue occurring in breast fillets and thighs (Kuttappan et al., 2013a; Huang and Ahn, 2018). Kuttapan et al. (2016) adapted a scoring system for the evaluation of the severity of WS, which he had established earlier (Kuttapan et al., 2012)(see picture 1). It was concluded that broilers fed a diet with high energy content led to higher and more efficient growth (improved feed conversion, higher live and fillet weights) but also to a higher percentage of fillets showing a severe degree of white striping.

Figure 3: Different degrees of white striping

  • 0 = normal (no distinct white lines)
  • 1 = moderate (small white lines, generally < 1 mm thick)
  • 2 = severe (large white lines, 1-2 mm thick, very visible on the fillet surface)
  • 3 = extreme (thick white bands, > 2 mm thickness, covering almost the entire surface of the fillet
  • (scoring and image source: Kuttapan, 2016)

 

Moreover, the WB and WS can simultaneously occur in the same muscle (Cruz et al., 2016; Kuttappan, Hargis, & Owens, 2016; Livingston, Landon, Barnes, & Brake, 2018).

Spaghetti Meat (SM), a result of decreased collagen linking

The condition of Spaghetti Meat was first mentioned by Bilgili (2015) under “Stringy-spongy”. SM is characterized by an insufficient bonding of the muscles due to an immature intramuscular connective tissue in the pectoralis major. The fiber bundles composing the breast muscle detach, and the muscle gets soft and mushy and resembles spaghetti pasta (Baldi et al., 2021). Probably due to the reduced collagen-linking degree, the texture of SM fillets is smoother after cooking (Baldi et al., 2019). In contrast to wooden breast, SM cannot be noticed in the living animal. Meat severely impacted by SM is downgraded and can only be used in further processed products, whereas slightly affected meat can be sold in fresh retailing (Petracci et al., 2019).

Another possible explanation for this myopathy may be the strong development of the breast muscle. The thickness of its upper section might reduce muscular oxygenation by compressing the pectoral artery (Soglia et al., 2021). The spaghetti structure generally appears mainly in the superficial layer and less in the deep ones.

Oxidative stress – one link in the chain of causes for myopathies

Oxidative stress is a result of impaired blood supply

Oxidative stress is one key factor of myopathies in breast muscle. As the faster growth is connected with an increase in muscle fiber diameter, the higher pressure of the surrounding fascia on the muscle tissue compresses the blood vessels, leading to a decreased blood flow, resulting in insufficient oxygen supply (hypoxia) and limited removal of metabolic by-products (Lilburn et al., 2019) from the muscle tissue. Hypoxia as – well as hyperoxia – plus the deficient removal of metabolic waste, promote the generation of free radicals (Kähler et al., 2016; Strapazzon et al., 2016; Petrazzi et al., 2019). If the endogenous antioxidant system cannot efficiently eliminate these ROS by using endogenous and exogenous antioxidants, the ultimate effect is increased oxidative stress.

Soglia and co-workers (2016) reported higher TBARS (Thiobarbituric acid reactive substances) and protein carbonyl levels, signs of oxidative stress, in severe wooden breast muscle tissue. The oxidative stress hypothesis was also supported by gene transcription analysis conducted by Mutryn et al. (2015) and Zambonelli et al. (2017).

Oxidative stress causes damage

ROS (reactive oxygen species) or free radicals are highly reactive. They can cause damage to the DNA, RNA, proteins, and lipids in the muscle cells (Surai et al., 2015), leading to inflammation and metabolic disturbances, and, in the end, the degeneration of muscle fibers (Kuttapan et al., 2021). If the regenerative capacity of the muscle cells does not countervail against the damages caused by oxidative stress, fibrous tissue and fat accumulate and lead to myopathies such as wooden breast (Petracci et al., 2019)

Oxidative stress can be managed

To support the animals in coping with oxidative stress, combining two approaches, an external and an internal, makes sense. This entails protecting feed at the same time as protecting the animal.

Chemical antioxidants preserve feed quality and prevent oxidation

Chemical antioxidants such as ethoxyquin, BHA, and BHT efficiently prevent feed oxidation. These antioxidants prevent the oxidation of unsaturated fats/oils and maintain their energy value. They are scavengers for free radicals, protect trace minerals like Zn, Cu, Mg, Se, and Vit E from oxidation and spare them to be used in the body for different metabolic processes as well as for the endogenous antioxidant system.

However, keep in mind that chemical antioxidants are strictly regulated, depending on type, concentration, and region. Ethoxyquin has a challenging status in the EU, for instance, due to a ruling that excludes it for the use of long-living or reproductive animals and that sets safety levels at a maximum total concentration of 50 mg ethoxyquin/kg complete feed for all animal species, except dairy ruminants.

Phy­tomolecules act as natural antioxidants and reduce lipid oxidation in breast muscles

Inside the body, phy­tomolecules help to mitigate oxidative stress by the direct scavenging of ROS and the activation of antioxidant enzymes. Phytogenic compounds like Carvacrol and thymol possess phenolic OH-groups that act as hydrogen donors (Yanishlieva et al., 1999). These hydrogens can “neutralize” the peroxy radicals produced during the first step of lipid oxidation and, therefore, retard the hydroxyl peroxide formation. The increase in serum antioxidant enzyme activities and a resulting lower level of malondialdehyde (MDA) can be caused by cinnamaldehyde (Lin et al., 2003). MDA is a highly reactive dialdehyde generated as a metabolite in the degradation process of polyunsaturated fatty acids.

Antioxidant capacity of phytomolecules demonstrated in broilers

A trial with 480 Cobb male chicks (3 treatments, 8 replicates) was conducted at the University of Viçosa (Brazil). The breast muscles of the birds fed a blend of phy­tomolecules showed lower MDA levels and thus reduced lipid oxidation compared to the negative control, but also to the birds fed an antibiotic.

The impact of breast muscle degradation in broilers can be mitigated

The downgrading of broiler meat due to increased incidence of breast muscle myopathies is a common issue, resulting in the significant economic losses to the broiler meat producers. Oxidative stress caused due to due faster growth rate and various other stressors, including the oxidation of feed and feed ingredients, can contribute to increased incidence of woody breast and white striping. Different nutritional and management strategies are employed to reduce WB and WS in broiler production. The inclusion of synthetic antioxidants to control the oxidation in feed as well as phytomolecules to support the endogenous antioxidant system can be a part of promising tools to mitigate the impact of breast myopathies and reduce economic losses in broiler production.

 

References:

Alnahhas, Nabeel, Cécile Berri, Marie Chabault, Pascal Chartrin, Maryse Boulay, Marie Christine Bourin, and Elisabeth Le Bihan-Duval. “Genetic Parameters of White Striping in Relation to Body Weight, Carcass Composition, and Meat Quality Traits in Two BROILER Lines Divergently Selected for the Ultimate PH of the Pectoralis Major Muscle.” BMC Genetics 17, no. 1 (2016). https://doi.org/10.1186/s12863-016-0369-2.

Baldi, Giulia, Francesca Soglia, and Massimiliano Petracci. “Current Status of Poultry Meat Abnormalities.” Meat and Muscle Biology 4, no. 2 (2020). https://doi.org/10.22175/mmb.9503.

Baldi, Giulia, Francesca Soglia, and Massimiliano Petracci. “Spaghetti Meat Abnormality in Broilers: Current Understanding and Future Research Directions.” Frontiers in Physiology 12 (2021). https://doi.org/10.3389/fphys.2021.684497.

Baldi, Giulia, Francesca Soglia, Luca Laghi, Silvia Tappi, Pietro Rocculi, Siria Tavaniello, Daniela Prioriello, Rossella Mucci, Giuseppe Maiorano, and Massimiliano Petracci. “Comparison of Quality Traits among Breast Meat Affected by Current Muscle Abnormalities.” Food Research International 115 (2019): 369–76. https://doi.org/10.1016/j.foodres.2018.11.020.

Boerboom, Gavin, Theo van Kempen, Alberto Navarro-Villa, and Adriano Pérez-Bonilla. “Unraveling the Cause of White Striping in Broilers Using Metabolomics.” Poultry Science 97, no. 11 (May 28, 2018): 3977–86. https://doi.org/10.3382/ps/pey266.

Carvalho, Leila M, Josué Delgado, Marta S Madruga, and Mario Estévez. “Pinpointing Oxidative Stress behind the White Striping Myopathy: Depletion of Antioxidant Defenses, Accretion of Oxidized Proteins and Impaired Proteostasis.” Journal of the Science of Food and Agriculture 101, no. 4 (2020): 1364–71. https://doi.org/10.1002/jsfa.10747.

Editors, AccessScience. “U.S. Bans Antibiotics Use for Enhancing Growth in Livestock.” Access Science. McGraw-Hill Education, January 1, 1970. https://www.accessscience.com/content/u-s-bans-antibiotics-use-for-enhancing-growth-in-livestock/BR0125171.

Ferreira, T.Z., R.A. Casagrande, S.L. Vieira, D. Driemeier, and L. Kindlein. “An Investigation of a Reported Case of White Striping in Broilers.” Journal of Applied Poultry Research 23, no. 4 (2014): 748–53. https://doi.org/10.3382/japr.2013-00847.

Hashemipour, H., H. Kermanshahi, A. Golian, and T. Veldkamp. “Effect of Thymol and Carvacrol Feed Supplementation on Performance, Antioxidant Enzyme Activities, Fatty Acid Composition, Digestive Enzyme Activities, and Immune Response in Broiler Chickens.” Poultry Science 92, no. 8 (2013): 2059–69. https://doi.org/10.3382/ps.2012-02685.

Huang, Xi, and Dong Uk Ahn. “The Incidence of Muscle Abnormalities in Broiler Breast Meat – a Review.” Korean journal for food science of animal resources 38, no. 5 (October 2018): 835–50. https://doi.org/10.5851/kosfa.2018.e2.

Kolakshyapati, Manisha. “Proteoglycan and Its Possible Role in ” Wooden Breast ” Condition in Broilers.” Nepalese Journal of Agricultural Sciences 13 (September 1, 2015): 253–60.

Kuttappan, V.A., B.M. Hargis, and C.M. Owens. “White Striping and Woody Breast Myopathies in the Modern Poultry Industry: A Review.” Poultry Science 95, no. 11 (2016): 2724–33. https://doi.org/10.3382/ps/pew216.

Kuttappan, V.A., C.M. Owens, C. Coon, B.M. Hargis, and M. Vazquez-Añon. “Incidence of Broiler Breast Myopathies at 2 Different Ages and Its Impact on Selected Raw Meat Quality Parameters.” Poultry Science 96, no. 8 (2017): 3005–9. https://doi.org/10.3382/ps/pex072.

Kuttappan, V.A., H.L. Shivaprasad, D.P. Shaw, B.A. Valentine, B.M. Hargis, F.D. Clark, S.R. McKee, and C.M. Owens. “Pathological Changes Associated with White Striping in Broiler Breast Muscles.” Poultry Science 92, no. 2 (2013): 331–38. https://doi.org/10.3382/ps.2012-02646.

Kuttappan, V.A., Y.S. Lee, G.F. Erf, J.-F.C. Meullenet, S.R. McKee, and C.M. Owens. “Consumer Acceptance of Visual Appearance of Broiler Breast Meat with Varying Degrees of White Striping.” Poultry Science 91, no. 5 (2012): 1240–47. https://doi.org/10.3382/ps.2011-01947.

Kuttappan, Vivek A., Megharaja Manangi, Matthew Bekker, Juxing Chen, and Mercedes Vazquez-Anon. “Nutritional Intervention Strategies Using Dietary Antioxidants and Organic Trace Minerals to Reduce the Incidence of Wooden Breast and Other Carcass Quality Defects in Broiler Birds.” Frontiers in Physiology 12 (2021). https://doi.org/10.3389/fphys.2021.663409.

Kuttappan, Vivek A., Megharaja Manangi, Matthew Bekker, Juxing Chen, and Mercedes Vazquez-Anon. “Nutritional Intervention Strategies Using Dietary Antioxidants and Organic Trace Minerals to Reduce the Incidence of Wooden Breast and Other Carcass Quality Defects in Broiler Birds.” Frontiers in Physiology 12 (2021). https://doi.org/10.3389/fphys.2021.663409.

Kähler, Wataru, Frauke Tillmans, Sebastian Klapa, Inga Koch, Julia Last, and Andreas Koch. “Oxidativer Stress Durch Hyperbare Hyperoxie Und Dessen Wirkung Auf Periphere Mononukleäre Zellen (PBMC) – Eine Übersicht Über Den Aktuellen Forschungsstand Am Schifffahrtmedizinischen Institut Der Marine.” Wehrmedizinische Monatsschrift 60, no. 2 (2016): 50–55.

Lake, Juniper A., and Behnam Abasht. “Glucolipotoxicity: A Proposed Etiology for Wooden Breast and Related Myopathies in Commercial Broiler Chickens.” Frontiers in Physiology 11 (2020). https://doi.org/10.3389/fphys.2020.00169.

Lilburn, M.S., J.R. Griffin, and M Wick. “From Muscle to Food: Oxidative Challenges and Developmental Anomalies in Poultry Breast Muscle.” Poultry Science 98, no. 10 (2019): 4255–60. https://doi.org/10.3382/ps/pey409.

Lin, Chun-Ching, Sue-Jing Wu, Cheng-Hsiung Chang, and Lean-Teik Ng. “Antioxidant Activity of Cinnamomum Cassia.” Phytother. Res. 17 (August 7, 2003): 726–30. https://doi.org/ https://doi.org/10.1002/ptr.1190.

Linden, Jackie. “Deep Pectoral Myopathy (Green MUSCLE Disease) in Broilers.” The Poultry Site, August 9, 2021. https://www.thepoultrysite.com/articles/deep-pectoral-myopathy-green-muscle-disease-in-broilers.

Lorenzi, M., S. Mudalal, C. Cavani, and M. Petracci. “Incidence of White Striping under Commercial Conditions in Medium and Heavy Broiler Chickens in Italy.” Journal of Applied Poultry Research 23, no. 4 (2014): 754–58. https://doi.org/10.3382/japr.2014-00968.

Martindale, L., W.G. Siller, and P.A.L. Wight. “Effects of Subfascial Pressure in Experimental Deep Pectoral Myopathy of the Fowl: An Angiographic Study.” Avian Pathology 8, no. 4 (1979): 425–36. https://doi.org/10.1080/03079457908418369.

Montagna, FS, G Garcia, IA Nääs, NDS Lima, and FR Caldara. “Practical Assessment of Spaghetti Breast in Diverse Genetic Strain Broilers Reared under Different Environments.” Brazilian Journal of Poultry Science 21, no. 2 (2019). https://doi.org/10.1590/1806-9061-2018-0759.

Mutryn, Marie F, Erin M Brannick, Weixuan Fu, William R Lee, and Behnam Abasht. “Characterization of a Novel Chicken Muscle Disorder through DIFFERENTIAL Gene Expression and Pathway Analysis Using Rna-Sequencing.” BMC Genomics 16, no. 1 (2015). https://doi.org/10.1186/s12864-015-1623-0.

National Chicken Council. “Per Capita Consumption of Poultry and LIVESTOCK, 1965 to Forecast 2022, in Pounds.” National Chicken Council, June 28, 2021. https://www.nationalchickencouncil.org/about-the-industry/statistics/per-capita-consumption-of-poultry-and-livestock-1965-to-estimated-2012-in-pounds/.

Papah, Michael B., Erin M. Brannick, Carl J. Schmidt, and Behnam Abasht. “Evidence and Role Of Phlebitis and LIPID Infiltration in the Onset and Pathogenesis of Wooden Breast Disease in MODERN Broiler Chickens.” Avian Pathology 46, no. 6 (2017): 623–43. https://doi.org/10.1080/03079457.2017.1339346.

Petracci, M., F. Soglia, M. Madruga, L. Carvalho, Elza Ida, and M. Estévez. “Wooden-Breast, White Striping, and Spaghetti MEAT: Causes, Consequences and Consumer Perception of Emerging Broiler MEAT ABNORMALITIES.” Comprehensive Reviews in Food Science and Food Safety 18, no. 2 (2019): 565–83. https://doi.org/10.1111/1541-4337.12431.

Petracci, M., S. Mudalal, A. Bonfiglio, and C. Cavani. “Occurrence of White Striping under Commercial Conditions and Its Impact on Breast Meat Quality in Broiler Chickens.” Poultry Science 92, no. 6 (2013): 1670–75. https://doi.org/10.3382/ps.2012-03001.

Ruberto, Giuseppe, and Maria T Baratta. “Antioxidant Activity of SELECTED Essential Oil Components in Two Lipid Model Systems.” Food Chemistry 69, no. 2 (2000): 167–74. https://doi.org/10.1016/s0308-8146(99)00247-2.

Russo, Elisa, Michele Drigo, Corrado Longoni, Raffaele Pezzotti, Paolo Fasoli, and Camilla Recordati. “Evaluation of White Striping Prevalence and Predisposing Factors in Broilers at Slaughter.” Poultry Science 94, no. 8 (2015): 1843–48. https://doi.org/10.3382/ps/pev172.

Schulze, Dieter. “Aktuelles Aus Der Broilermast .” Presentation – 7. Tagung des VET Arbeitskreises Geflügelforschung Tiergesundheit beim Nutzgeflügel, Rust, 2018.

Sihvo, H.-K., K. Immonen, and E. Puolanne. “Myodegeneration with Fibrosis and Regeneration in the Pectoralis Major Muscle of Broilers.” Veterinary Pathology 51, no. 3 (May 26, 2014): 619–23. https://doi.org/10.1177/0300985813497488.

Sirri, F., G. Maiorano, S. Tavaniello, J. Chen, M. Petracci, and A. Meluzzi. “Effect of Different Levels of Dietary Zinc, Manganese, and Copper from Organic or Inorganic Sources on Performance, Bacterial Chondronecrosis, Intramuscular Collagen Characteristics, and Occurrence of Meat Quality Defects of Broiler Chickens.” Poultry Science 95, no. 8 (2016): 1813–24. https://doi.org/10.3382/ps/pew064.

Soglia, Francesca, Luca Laghi, Luca Canonico, Claudio Cavani, and Massimiliano Petracci. “Functional Property Issues in Broiler Breast Meat Related to Emerging Muscle Abnormalities.” Food Research International 89 (2016): 1071–76. https://doi.org/10.1016/j.foodres.2016.04.042.

Strapazzon, Giacomo, Sandro Malacrida, Alessandra Vezzoli, Tomas Dal Cappello, Marika Falla, Piergiorgio Lochner, Sarah Moretti, Emily Procter, Hermann Brugger, and Simona Mrakic-Sposta. “Oxidative Stress Response to Acute Hypobaric Hypoxia and Its Association with Indirect Measurement of Increased Intracranial Pressure: A Field Study.” Scientific Reports 6, no. 1 (2016). https://doi.org/10.1038/srep32426.

Surai F, Peter. “Antioxidant Systems in Poultry Biology: Superoxide Dismutase.” Journal of Animal Research and Nutrition 01, no. 01 (2016). https://doi.org/10.21767/2572-5459.100008.

Tasoniero, G., M. Cullere, M. Cecchinato, E. Puolanne, and A. Dalle Zotte. “Technological Quality, Mineral Profile, and Sensory Attributes of Broiler Chicken Breasts Affected by White Striping and Wooden Breast Myopathies.” Poultry Science 95, no. 11 (2016): 2707–14. https://doi.org/10.3382/ps/pew215.

United Nations. “How Your Company Can Advance Each of THE SDGS: UN Global Compact.” How Your Company Can Advance Each of the SDGs | UN Global Compact. Accessed August 31, 2021. https://www.unglobalcompact.org/sdgs/17-global-goals.

Xing, T., X. Zhao, L. Zhang, J.L. Li, G.H. Zhou, X.L. Xu, and F. Gao. “Characteristics and Incidence of Broiler Chicken Wooden Breast Meat under Commercial Conditions in China.” Poultry Science 99, no. 1 (2020): 620–28. https://doi.org/10.3382/ps/pez560.

Zambonelli, Paolo, Martina Zappaterra, Francesca Soglia, Massimiliano Petracci, Federico Sirri, Claudio Cavani, and Roberta Davoli. “Detection of Differentially Expressed Genes in Broiler Pectoralis Major Muscle Affected by White Striping – Wooden Breast Myopathies.” Poultry Science 95, no. 12 (2016): 2771–85. https://doi.org/10.3382/ps/pew268.

 




Organic acids: How the mode of action delivers benefits | INFOGRAPHIC

feed quality silos kv

Download this comprehensive A3 infographic to understand how organic acids can benefit your operation. For further questions or feedback, we’ll be happy to hear from you.

Contact Us



4 interventions to help feed producers cope with increasing prices

field in storm

By Technical Team, EW Nutrition

A storm has been brewing.

Even before the invasion of Ukraine in late February, global growth was expected to trend significantly downward, from 5.5-5.9% in 2021 to 4.1-4.4% in 2022 and 3.2% in 2023. The causes are similar across industries:

  • rising inflation around the world
  • supply chain issues stretching long into the foreseeable future, including exponentially higher freight costs
  • pandemic restrictions and long-lasting effects
  • rising raw material prices

In early 2022, this “perfect storm” quickly stifled the moderate optimism of Q4 2021. Of course, the worst was yet to come.

What causes sustained price increases?

With the ongoing crisis in Eastern Europe, economic perspectives are tilting down to a new level of uncertainty. The new variables now thrown into the mix are crude oil and natural gas prices, as well as added concerns over other raw materials coming out of Russia and Ukraine.

Raw materials Line Graph

Source: tradingeconomics.com, March 2022

Russia accounts for 25% of the global natural gas market and 11% of the crude oil market. It is also the largest wheat exporter (China and India are still the largest producers, but Russia exports appreciably more). Together with Ukraine, also a powerhouse of agricultural exports, the two now enemies account for 29% of international annual wheat sales.

international annual wheat sales

Source: ING, March 2022

Wheat prices were already nearly double the five-year average shortly before the invasion; after February 24, they rose by another 30%. Today we are at a staggering 53% increase in wheat prices in just the last few months. We are at a 14-year peak. And the countries that import the most from Russia and Ukraine (such as Egypt or Indonesia) will bear the brunt of this crisis.

Together, Russia and Ukraine’s exports account for 12% of the world’s traded calories. The two countries account for almost 30 percent of global wheat exports, almost 20 percent of corn exports, and more than 80 percent of the world supply of sunflower oil. However, the compounded effect of embargo and devastation in the two countries will surely exert tremendous influence on the global economic outlook for years to come.

What are the perspectives?

Agriculture was already hurting before February 24th. Poor harvests caused by extreme weather conditions, continued losses along the production chain, supply chain issues, and abnormal pandemic buying patterns combined to sink global wheat stocks one third lower than the five-year average. Reserves, in other words, are low – and will be significantly lower.

We need to be realistic about the coming months and years. Corn (where Ukraine accounts for 13% of global exports) and wheat will be severely hit by the war and its aftermath. This will compound all the pre-existing factors (transportation costs, supply chain slowdown, continuing weather disruptions, energy costs), none of which will trend down. Fertilizer prices have also gone up exponentially, and Russia – the largest exporter – has banned fertilizer exports at the beginning of March. The effects will be ultimately reflected in the cost of raw materials.

Ukraine and Russia have all but banned grains exports – either for security reasons or to protect internal needs. On top of this, the last harvests collected in Ukraine are now sitting in bins where ventilation and temperature controls have been affected by power cuts.

World Bank commodity Price Data

Source: World Bank, March 2022

At the end of February, World Bank data already showed upward movement for nearly all categories; whatever was not trending up at that time is catching up fast. The last time things looked like this, experts warn, was in 2008-2009 – and social unrest followed around the world, to serious global consequences.

However, the perspective is not catastrophic and there is room to conserve profitability. The essential is to intervene with fast, targeted action that favors smart optimization, localization, and long-term planning.

What can feed producers do?

 Most feed producers will be caught in the middle of all rising costs, from raw materials to transport and energy. Where, then, can they look for shelter when the storm hits?

Optimize feed costs without losing performance

One of the first things feed producers will focus on will be cutting down feed costs. At this point, it is essential that this basic optimization does not impact animal health and performance. Here is what should be kept in mind.

Preserve feed material and feed quality

Whatever raw materials you choose to use, minimizing losses and maintaining quality should be the first step. Losses caused by storage are often the easiest to mitigate.

Quick intervention #1: Use mold inhibitors and mitigate the impact of mycotoxins

Compensate for lost nutrients (protein content, digestibility)

Freight costs will continue to cause pressure on transported raw materials, driving producers to local/regional options. When you replace one feed ingredient with a cheaper one, the first effects will be on the active principle and on the digestibility of the feed. Often something you are taking out of the diet cannot be replaced 1:1.

Quick intervention #2: Maximize the use of enzymes to ensure high feed digestibility; for poultry, pigments can replace corn-derived coloration (to control color variability)

Compensate for stress caused by diet changes

Adjusting the feed composition doesn’t only have effects on paper.

Even if you choose the best replacements, adjust the balance, compensate for loss of digestibility and optimize everything in every possible way, one thing remains:

The animal receives a new diet.

New diets are textbook stressors. But sometimes the nutritionist or the producer is so stressed that it is easy to overlook the stress placed inside the animal. Since animal efficiency is key for productivity, it is essential that the effects of diet stress are mitigated for the animal.

Quick intervention #3: Precautionary use of gut-health mitigating additives; also consider palatable feed materials and taste enhancers

Optimize production costs without losing quality

To optimize costs on the production floor, there are three essential areas where feed producers can act:

  • Saving on energy costs and reducing the carbon footprint
  • Reducing losses on the production floor
  • Increasing throughput without increasing manpower

To answer these challenges, there are solutions that can operate individually. More importantly in such times, there are products that can impact all three areas without negatively influencing the quality of output. One such solution, for instance, can decrease energy costs, increase throughput and pellet quality, and reduce fines.

Quick intervention #4: Choose a solution that satisfies 3/3 of your issues

Conclusion

Climate change will continue to wreak havoc on the predictability of harvests. Freight costs are projected to keep rising. And the costs of war and (hopefully) reconstruction will take a toll on the cost of living and cost of doing business around the world, for years to come.

In the storm that has already started, it is unwise to take shelter for a while and hope for good weather soon. Cutting down on ingredients here and additives there won’t keep profitability high in the long run. Feed producers must look at all aspects – from feed storage and composition to process improvement – and consider holistic measures that protect animals and profitability at the same time.




Mycotoxin interactions amplify damages – What are the right solutions?

art120 header

By Technical Team, EW Nutrition

Contamination with multiple mycotoxins is the rule for animal feeds, rather than the exception. Trial data shows that producers can prevent negative effects on animal health and performance by using high-performing toxin binders.

Animal Caw Health Feed

Multiple mycotoxins contaminate animal feed – problems and solutions

Mycotoxins pose an exceptional challenge for feed and animal producers. Generated by common molds, they occur in a great variety and numbers. Difficult to diagnose, mycotoxicosis in farm animals shows in a range of acute and chronic symptoms: decreased performance, feed refusal, poor feed conversion, reduced body weight gain, immune suppression, reproductive disorders, and residues in animal food products.

Regulatory mycotoxin thresholds don’t account for interactions

Regulatory thresholds for permissible mycotoxin levels in feed are derived from toxicological data on the effects of exposure of a certain species, at a certain production stage, to a single mycotoxin. This makes practical sense: while aflatoxins are carcinogens, fumonisins attack the pulmonary system in swine, for example. Mycotoxins also affect poultry in a different way than cattle, and broilers in a different way than breeders or laying hens, to mention more cases.

The problem is that, in reality, individual mycotoxin challenges are the exception. Animal diets are usually contaminated by multiple mycotoxins at the same time (Monbaliu et al., 2010; Pierron et al., 2016). Since 2014, EW Nutrition has conducted more than 50,000 mycotoxin tests on both raw material and finished feeds samples, across the globe. 85% of these samples were contaminated with more than one mycotoxin and one third positive for four or more mycotoxins.

How does contamination with multiple mycotoxins occur in animal feed?

The concurrent appearance of mycotoxins in feed can be explained as follows: each mold species has the capacity to produce several mycotoxins simultaneously. Each species, in turn, may infest several raw materials, leaving behind one or more toxic residue. In the end, a complete diet is made up of various raw materials with individual mycotoxin loads, resulting in a multitude of toxic challenges for the animals.

If animals were exposed to only one mycotoxin at a time, following the regulatory guidelines on maximum challenge levels would usually be enough to keep them safe. However, several studies have shown that the effects of exposure to multiple mycotoxins can differ greatly from the effects observed in animals exposed to a single mycotoxin (Alassane-Kpembi et al., 2015 & 2017). The simultaneous presence of mycotoxins may be more toxic than one would predict based on the known effects of the individual mycotoxins involved. This is because mycotoxins interact with each other. The interactions can be classified into three main different categories: antagonistic, additive, and synergistic  (Grenier and Oswald, 2011).

Types of mycotoxin interactions

  • Additivity occurs when the effect of the combination equals the expected sum of the individual effects of the two toxins. Animal chick mycotoxin interactions
  • Synergistic interactions of two mycotoxins lead to a greater effect of the mycotoxin combination than would be expected from the sum of their individual effects. Synergistic actions may occur when the single mycotoxins of a mixture act at different stages of the same mechanism. A special form of synergy, sometimes called potentiation, occurs when one or both of the mycotoxins do not induce significant effects alone but their combination does. Fumonisin alone, for example, requires high levels to exerts effects on broiler performance. When aflatoxin is also in the feed, the effects are higher than those of aflatoxin alone (Miazzo et al., 2005)
  • Antagonism can be observed when the effect of the mycotoxin combination is lower than expected from the sum of their individual effects. Antagonism may occur when mycotoxins compete with one another for the same target or receptor site. In an in-vitro study using human colon carcinoma cells (HCT116), Bensassi and collaborators (2014), found that DON and Zearalenone individually caused a marked decrease of cell viability in a dose-dependent manner; when combined, the effect was drastically reduced.

Most of the mycotoxin mixtures lead to additive or synergistic effects. The actual consequences for the animal will depend on its species, age, sex, nutritional status, the dose and duration of exposure as well as environmental factors. What is clear is that mycotoxin interactions pose a significant threat to animal health and critically impede risk assessment.

From awareness to action: risk assessment and toxin binders

Given their complex interactions, the toxicity of combinations of mycotoxins cannot merely be predicted based upon their individual toxicities. Mycotoxin risk assessments have to consider that even low levels of mycotoxin combinations can harm animal productivity, health, and welfare. Feed and animal producers need to be aware of which raw materials are likely to be contaminated with which mycotoxins, be able to accurately link them to the risk they pose for the animal and consequently take actions before the problems appear in the field.

Trials demonstrate effectiveness of toxin mitigation solutions

Toxin binders that are effective against a broad spectrum of mycotoxins significantly reduce the risks of mycotoxin exposure. In vitro trial data shows that EW Nutrition’s cost-effective toxin-mitigating product Solis Max shows a high mitigation capacity, even at low inclusion rates (Figure 1). Importantly, Solis Max helps to reduce various mycotoxins’ negative effects on performance without any negative effects on nutrient absorption.

Solis Max shows mitigation capacity in in vitro trial (%)
Figure 1: Solis Max shows mitigation capacity in in vitro trial (%)

 

In a recent trial of 416 day-old Vencobb-430 broilers, premium product Mastersorb Gold has demonstrated its ability to support animals coping with multiple mycotoxin challenges. For broilers challenged with 200 ppb AFB1 and 350 ppb OTA, Mastersorb Gold supplementation resulted in 4.3% higher average daily weight gain than the challenged group, a higher body weight on day 42 and a 2% better feed conversion (Figure 2), which means a total recovery of the performance when compared with the non-challenged control.

Mastersorb Gold improves body weight and FCR of broilers challenged with AFB1 and OTA
Figure 2: Mastersorb Gold improves body weight and FCR of broilers challenged with AFB1 and OTA

 

Liver health also improved: after 21 days, broilers receiving Mastersorb Gold showed lower AST (-20%) and ALT (-50%) levels compared to the challenged group. Mycotoxin-induced stress was also lower, as evidenced by a 25% lower H/L ratio and 20% reduced white blood cell count for the Mastersorb Gold group. All of the mentioned biomarkers were similar to the non-challenged control, showing the preventive effects of Mastersorb Gold on health and performance.

Proactive management: tackle multiple mycotoxin challenges head on

Mycotoxins interactions are the norm, not the exception. Yet, regulatory standards currently only cover the effects of individual mycotoxins, leaving productions exposed to risks of additive and synergistic mycotoxin interactions animals’ health and performance. Luckily, management options are available: Careful risk evaluation explicitly includes the threat of multiple contaminations. And producers can proactively ensure better health, welfare and productivity of their animals by investing in the right toxin mitigation solution for their business.

 


References

Alassane-Kpembi, Imourana, Olivier Puel, and Isabelle P. Oswald. “Toxicological Interactions between the Mycotoxins Deoxynivalenol, Nivalenol and Their Acetylated Derivatives in Intestinal Epithelial Cells.” Archives of Toxicology 89, no. 8 (August 2015): 1337–46. https://doi.org/10.1007/s00204-014-1309-4.

Alassane-Kpembi, Imourana, Gerd Schatzmayr, Ionelia Taranu, Daniela Marin, Olivier Puel, and Isabelle Paule Oswald. “Mycotoxins Co-Contamination: Methodological Aspects and Biological Relevance of Combined Toxicity Studies.” Critical Reviews in Food Science and Nutrition 57, no. 16 (November 2017): 3489–3507. https://doi.org/10.1080/10408398.2016.1140632.

Bensassi, Fatma; Gallerne, Cindy; Sharaf el dein, Ossama; Rabeh Hajlaoui, Mohammed; Lemaire, Christophe and Bacha, Hassen. “In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone” Toxicon 84 (2014): 1-6. https://doi.org/10.1016/j.toxicon.2014.03.005.

Grenier, B., and I. Oswald. “Mycotoxin Co-Contamination of Food and Feed: Meta-Analysis of Publications Describing Toxicological Interactions.” World Mycotoxin Journal 4, no. 3 (May 5, 2011): 285–313. https://doi.org/10.3920/wmj2011.1281.

Miazzo, R., M.F. Peralta, C. Magnoli, M. Salvano, S. Ferrero, S.M. Chiacchiera, E.C.Q. Carvalho, C.A.R. Rosa, and A. Dalcero. “Efficacy of Sodium Bentonite as a Detoxifier of Broiler Feed Contaminated with Aflatoxin and Fumonisin.” Poultry Science 84, no. 1 (January 2005): 1–8. https://doi.org/10.1093/ps/84.1.1.

Monbaliu, Sofie, Christof Van Poucke, Christ’l Detavernier, Frédéric Dumoulin, Mario Van De Velde, Elke Schoeters, Stefaan Van Dyck, Olga Averkieva, Carlos Van Peteghem, and Sarah De Saeger. “Occurrence of Mycotoxins in Feed as Analyzed by a Multi-Mycotoxin LC-MS/MS Method.” Journal of Agricultural and Food Chemistry 58, no. 1 (2010): 66–71. https://doi.org/10.1021/jf903859z.

Pierron, Alix, Imourana Alassane-Kpembi, and Isabelle P. Oswald. “Impact of Mycotoxin on Immune Response and Consequences for Pig Health.” Animal Nutrition 2, no. 2 (2016): 63–68. https://doi.org/10.1016/j.aninu.2016.03.001.




Why digitally mature companies fare better

digitization g37a5948d0 1920

When you think of a “digitally mature company,” what do you see? The term might conjure up images of tech-savvy millennials in Silicon Valley, but digitally mature companies are all around you—in every industry, in every corner of the globe. They’re enterprises that have embraced digital technology to transform the way they do business and connect with their customers.

digitally mature companies fare better

So what does a digitally mature company look like? It’s an enterprise that:

  • Has clarity of purpose and vision, and is committed to achieving it
  • Invests in people, processes and technology to support its objectives
  • Keeps evolving as new opportunities present themselves and new technology emerges

Digital maturity correlates with a better bottom line

However you define it, digital maturity matters—and the research shows a direct correlation between being a digitally mature company and having bottom line success.

The economic benefits of digital maturity are well documented. A McKinsey study of 2,400 companies found that those able to exploit ICT to boost efficiency grew revenue 3.2% faster annually than their peers over a five-year period. Another study looked at more than 180 publicly listed companies from around the world, finding that digitally mature organizations outperformed their less mature competitors across all financial measures. This included a return on invested capital (ROIC) 50% higher than laggards.

In an increasingly digital world, companies that embrace technology are simply becoming more competitive and profitable than those who don’t. And it’s no wonder that digitally mature companies have a competitive edge. According to the 2016 State of Digital Business Transformation study conducted by SAP, organizations that see themselves as digitally mature outperform their peers in terms of net income by 20%. In fact, those with advanced digital capabilities enjoy a 42% net income margin compared with 18% for those without any digital capability.

High-maturity companies report

According to PwC’s Annual Global CEO Survey, digitally mature companies are out-performing their less digitally mature peers by 53 percent when it comes to revenue growth over the past three years.

Research shows that digitally mature companies are significantly more likely to have revenues over $1 billion than their digitally novice counterparts. And the larger the enterprise is, the greater the gap in revenue. For example, 50% of large enterprises with strong digital maturity have annual revenues over $1 billion, compared with only 10 percent of small organizations with weak digital maturity.

The numbers show an undeniable trend and help shape an answer to the question “why do digitally mature companies have better results”.

  1. They have resources – or they choose to invest in resources – that a) make processes easier, from operations to accounting, and b) help key stakeholders understand strengths and weaknesses, from tracking shipments to tracking customer journeys.
  2. Digital resources facilitate in-company communication, transparency, and speed of movement and reaction.
  3. Resources are freed up by these facilitated processes and communications, increasing overall productivity.
  4. The ROI of digitalization and digital transformation reflects in the company bottom line.

Moving toward digital maturity in every aspect of the business

A digitally mature company can be defined as a business that has invested in digital technologies to transform the way it does business to enhance customer relationships, improve employee engagement, and streamline processes.

Digital maturity is not just about having the latest gadgets or software packages. It’s a holistic approach to using technology to create value and transform your organization into one that can compete and win in today’s marketplace.

Many organizations are still struggling to make this shift. Their strategies for deploying digital technologies are often limited, and their applications are not fully functional or properly integrated. They don’t have the right tools or the right talent to execute on their plans. As a result, they’re increasingly vulnerable to disruption from start-ups, new entrants, and other competitors who are much more adept at using digital technologies to achieve competitive advantage.

Digital maturity is also essential for any organization seeking to achieve great things through innovation – whether bringing new products or services to market or delivering an enhanced experience for customers.

But digital maturity does not come easily – or quickly. If a company has reached maturity, it’s probably because the management team has been working on it for years. They’ve had plenty of time to get the details right. They’ve also built a solid customer base and cultivated positive relationships with partners along the value chain. In other words, the sooner you set off, the faster you get there.

Conclusion: Long-term digital transformation is a matter of survival

In the last decade, organizations have begun to realize that they must implement a digital approach to their business if they want to stay competitive. In the last few years, we’ve seen many companies begin to make this shift.

What does it take for an organization to become digitally mature? There are four components:

1)        Business strategy. Companies that put together a digital strategy from the top down with support from the board are more likely to move forward than those that don’t create one.

2)        Technology strategy. A technology strategy is essential for development, but it must be in line with an organization’s overall business goals.

3)        Governance. Establishing governance structures can help organizations focus on what’s most important during times of uncertainty.

4)        Employee skills. Organizations need a skilled workforce to be successful digitally, but training and development aren’t enough—digital maturity programs must be incorporated into daily operations.

Truly digitally mature organizations—that is, those that are able to reap the benefits of digital transformation—are already seeing demonstrable results. They’re seeing a return on their investment of time, money and resources; they’re becoming more efficient and effective; and they’re capturing new revenue streams.




Why caring about climate change is good for your business

art116 pic1 1

climate change is good for your business

by Technical Team, EW Nutrition

The Glasgow Climate Pact reached at the COP26 summit this November sent a clear message to businesses across the globe: Put sustainability on top of your corporate agenda or risk losing out. But how can food and feed producers translate the knowledge that climate change is happening into good business decisions? What impact is it causing, and which actions can we take today?

Why climate change is such a big deal

There is an overwhelming consensus among scientists that climate change is happening and that we need to stop it. Long-term changes in global temperature and weather patterns are nothing new. What is new is that these shifts are primarily driven by human activities.

Activities such as burning fossil fuels, livestock farming, and deforestation release carbon dioxides and other greenhouse gases (GHG) into the atmosphere. GHG trap the sun’s heat and cause average temperatures to rise.

Diagram of global average temperatures from 1850 to 2020
Copyright: Ed Hawkins, National Centre for Atmospheric Science, University of Reading

Compared to the pre-industrial era, average temperatures are now 1.2° C warmer. That doesn’t sound like a lot. But the effects are disastrous and disproportionately so for people in low-income communities and developing countries.

Climate change is already causing sea level rises, threatening coastal regions, and ocean acidification, which disrupts global seafood supplies. Unprecedented losses in biodiversity are compromising food security and ecosystem services (such as pollination and irrigation). Biodiversity losses also expose us to zoonotic diseases – for example, the ongoing COVID-19 pandemic has zoonotic origins.

Due to climate change, the frequency and severity of extreme weather events are increasing. As countries in Europe and China experience historic rainfall and flooding, other parts of the world, such as Australia, the western US, and many African countries, face intense droughts. With further warming, Pacific islands will disappear under rising sea levels. And regions such as the Middle East will suffer from extreme heatwaves and see farmland turn into deserts.

How climate change affects agricultural businesses

While some crops and areas benefit from higher temperatures and changed weather patterns, on the whole, it is becoming more difficult to feed the world. Extreme weather events such as droughts, floods, hurricanes, heatwaves, and wildfires pose severe challenges for agricultural businesses.

Agricultural production costs are and will be increasing further because climate change effects entail water scarcity, raw material shortages, higher energy prices, and stiffer competition for land as certain areas become climatically unsuitable for production.

Rotten corn cob
Microbial contamination by toxigenic molds threaten human and animal health

Feed and food crop yields and quality suffer both from torrential rain and flooding and heat waves and droughts. Researchers from the University of Minnesota have found that climate change is already reducing global rice yields by 0.3% and wheat yields by 0.9% on average each year. Another study showed that every 1° C increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%.

We also see increased problems with pests and diseases. Pests already destroy 40 % of global crop production each year. As temperatures rise, pests from fall armyworms to desert locusts expand into new territories. Due to warmer temperatures, disease vectors such as mosquitoes, flies, and ticks also proliferate and migrate, carrying new pathogens to previously unexposed livestock. Additionally, decreased forage quality, heat stress, and water shortages already compromise livestock immunity.

And let’s not forget that the wellbeing and safety of the workforce are directly affected by climate change effects such as extreme temperatures and reduced air quality. This is even more true for outdoor workers and the 143 million “climate migrants” we expect to see by 2050. Climate change has also triggered a significant cultural shift, especially in younger generations. The climate-conscious GenZ talent only wants to work for employers who genuinely commit to sustainability.

Let your business thrive despite climate change

Global warming must be limited to 1.5° C to avert the most devastating impacts. To achieve this, we have to cut greenhouse gas emissions in half by 2030. And by 2050, the world has to reach “net-zero” emissions, i.e., removing as many greenhouse gases from the atmosphere as we release into it.

Climate change regulations are becoming more stringent, especially for the energy, transport, and agricultural sectors. As UN High-level Climate Action Champion Nigel Topping puts it:

“If you haven’t got a net-zero target now, you’re looking like you don’t care about the next generation, and you’re not paying attention to regulations coming down the pipe. Your credit rating is at risk, and your ability to attract and keep talent is at risk.”

What can we do? Agriculture is unusual in that its contribution to anthropogenic climate change mostly comes from methane and nitrous oxide instead of carbon dioxide.  Nitrous oxide emissions stem from soils, fertilizers, and manure, while ruminants and rice cultivation release methane.

Across these sectors, much more needs to be done at the policy level to incentivize sustainable husbandry, knowledge transfer, and targeted R&D. Still, wider adoption of existing best practices and technologies would help the global food and feed sectors to be more resilient and substantially reduce its GHG.

Enhanced efficiency fertilizers can reduce nitrous oxide emissions from soils, while phytogenic feed additives curb methane emissions in ruminants. And exciting research on topics such as pheromone-based pest control shows that climate change adaptation opens up new business opportunities.

Spend time on a detailed review of your company’s climate impact. This will reveal opportunities for emission reductions and decarbonization, both in your direct operations and along the value chain. More energy-efficient compound feed production, for example, helps feed mills but also improves the carbon footprint of the final animal products. And in times of Agriculture 4.0, investing in digital technologies, platforms, and processes will be vital to identifying and capitalizing on new business opportunities for climate-conscious production.

No one bears the brunt of climate change quite as intensely as agribusinesses. Let’s champion sustainability for improved corporate reputation, stronger risk management, long-run cost savings, market access, and attracting and retaining qualified employees and customers.

 




The top 5 challenges for businesses in 2022

challenge 6689107

By Technical Team, EW Nutrition

 

COVID-19 is definitely still a concern across the globe. With only about 47% of the world fully vaccinated, chances are we will not see the end of it next year. And with the unequal distribution of vaccines, globalization will keep bringing it home.

However, while everyone has an eye on the disruptions caused by COVID-19 to businesses and society in general, there are other looming challenges to prepare for. Here is a brief look at the top 5 challenges that rose to the surface in 2021, which are forecast to cause even bigger waves in 2022.

top 5 challenges for businesses

Sustainability: Accountability – and accounting

Greenwashing doesn’t wash anymore.

In 2021, sustainability has become an unavoidable topic not just for ecologists and (once a year or so) heads of state, but also for businesses and the masses. With extreme weather phenomena looming large in the news, climate change has become a fact of life. It no longer needs to be accepted as much as it needs to be managed.

The challenge is twofold. One the one hand, businesses need to demonstrate corporate accountability by monitoring the environmental footprint of their activities. On the other hand, businesses need to preserve the financial viability of their sustainability initiatives.

The balance between accountability and financial viability is still hard to find. Sustainability in business is an expensive proposition. Not only is it costly to implement fully sustainable measures, but finding the sustainability hotspots in your value chain and retrieving the data is sometimes nearly impossible. And, while reporting for scope 1 and 2 is somewhat easier, scope 3 accounting is still a tough nut to break.

Based on the Greenhouse Gas (GHG) Protocol, emissions are divided by source into 3 major scopes:

Scope 1 – direct emissions of the reporting company. This includes owned or controlled sources such as company facilities or company vehicles.

Scope 2 – indirect emissions from consumption. Here are included purchased electricity, steam, heating and cooling for the company’s use.

Scope 3 – all indirect emissions along the value chain. Under scope 3 fall upstream and downstream emissions through purchased goods and services, capital goods, processing, transportation and distribution, waste, use of sold products, and much more.

GHG Protocol

Source: GHG Protocol

Nevertheless, the equation must balance. A study by Pew Research Center shows that sustainability and addressing climate change are not just thoughts, but immediate concerns for the younger generation. Gen Z (people born between 1997-2012) are actively engaged in following and/or combatting the effects of climate change. Research by Deloitte indicates that, for Gen Z, climate change and protecting the environment are the top concern.

When your upcoming workforce demonstrates such strong interest, it is remiss to ignore it.

Climate challenges: Prepared for extreme weather?

This is getting serious.

Deadly snowstorm in Spain in January. A deadly heatwave that killed 569 people in Canada in June. Deadly floods that affected western Germany, The Netherlands, and Belgium in July. Deadly fires that raged across Italy and Greece in August. And many more deadly extreme weather events whose roots lie in climate change.

They are not just a reason to join the fight for sustainability. They are, in more immediate terms, a reason to examine how well your business is prepared to face the next extreme weather event. Because it is definitely coming. And it may affect your business – possibly directly, depending on your location, but definitely indirectly. The impact of resource scarcity could already be felt this year, when extreme weather events around the world affected harvest quantity and quality. Coffee and sugar futures have been on the rise for years, and so have wheat prices.

Macrotrends

Source: Macrotrends

In fact, according to a 2021 Deloitte report, companies are actively concerned about the impact of climate change issues on their activities, with climate-related disasters topping the list and scarcity of resources a close second.

2021 Deloitte report

Source: Deloitte

Being prepared for extreme events means, in most cases, managing risks across company facilities, as well as across the value chain. The more widespread and varied the production footprint and sourcing capabilities, the better can a company weather the storm.

Supply chain issues: No end in sight

No, it’s not getting better soon.

ICIS shipping chart
Source: ICIS

In fact, after over a year of constant disruptions, problems have accumulated into a perfect storm. Unpredictable demand and availability, as well as unpredictable labor shortages, both due to COVID-19 and various side-effects and accidents, have pushed container availability and port unloading infrastructure into a frenzied downward spiral. While container prices have gone up (over $20,000 for a standard container coming to the US from east Asia), ports have been unable to handle the incoming ships’ unloading needs.

Some ports have already moved to 24/7 operations, yet the issues will take much longer to fix – and prices are not likely to come down in a hurry. However, reliable forecasting in such turbulent times is nearly impossible.

In these circumstances, old wisdom can be reactivated. Instead of the cheaper and more agile just-in-time model that many companies practiced, increasing safety stocks and developing a wider global footprint are going to be the norm. On top, developing excellent relations with suppliers and managing customer expectations are critical. As Dan Swan, McKinsey Operations expert, put it: Supply chains are no longer a “necessary evil”, but more and more “a real differentiator for companies”. Product availability is the new name of the game.

In the meantime, expect prices and lead time to remain high for quite a while yet.

Digitalization: Keeping up with the world

To the surprise of no one with any knowledge of markets, a 2019 study by Deloitte confirmed that businesses on their path to digital transformation tend to perform better financially. In the meantime, COVID-19 has accelerated this trend. With the Zoom boom and remote working, digital communications have become the norm – and time is not going back. In 2022, a mature company should also be a digitally mature company.

What does digital maturity mean? By and large, according to Deloitte’s concept of “pivoting to digital maturity”, it means that organizations use data and technology “to continuously evolve all aspects of its business models—what it offers, how it sells (interacts with its customers) and delivers, and how it operates”.

In 2022, organizations will feel even more under pressure to step up: connecting employees across multiple locations, integrating “business technologists” into their organigrams and empowering them to bring digitalization home, agility through autonomous modular processes, automation in every possible quarter, and more.

In some sectors, digitalization is self-implied. ICT, media, finance, and professional services are more digitally advanced than others. Logistics, retail, and other industries that rely on distributed databases will also make progress. However, even in agriculture and animal production, where most outsiders still picture tractors and barns, the fourth revolution is in full progress. The power of data, the possibilities brought by the cloud, the ease of synchronous communication will impact even the most conservative industries. Whoever is not prepared for digitalization will inevitably fall behind.

Human resources: Labor shortages, happynomics and more

How is it possible to have both high employment and labor shortages at the same time?

#2 on the list of concerns for Gen Z, as evidenced in Deloitte’s research, is unemployment. And yet, the evidence is mounting that most companies (nearly 9 in 10, in one study) are having trouble filling certain positions – especially entry- and mid-level.

Deloitte’s research report

Source: Deloitte

In the US, analysts have been scratching their heads at a disconnect between 8.4 million unemployed and 10 million job openings, with radical differences in sectors such as professional and business services or education and health services.

Most answers focus on the realities of the “Corona times”. People who were forced to work remotely discovered that they enjoyed it. They left inflexible jobs for more flexible ones – or just to spend more time with the family.Job Report

At the same time, childcare insecurity made it compulsory for some parents to give up their jobs to be home for children whose schools or care centers were closed in lockdown.

Workers in retail and hospitality, who saw their jobs being threatened, again and again, by COVID-19. Many were furloughed or sent into unemployment. While out of work,  unemployment benefits allowed people to reconsider career paths – and many decided to move to more secure industries.

And, finally, workers whose jobs are not threatened fall prey to burnout during intense work-from-home bouts during long and/or repeated lockdown periods.

If companies have trouble filling positions, they might consider offering more flexibility. Another study by Gartner shows that, at least theoretically, employers and employees are aligned in seeing flexibility as critical to the organization. This includes as a top consideration the ability to work both from home and from the office, as well as somewhat flexible work times.

Yes, work-from-home will outlast COVID-19. At the same time, the concept of happynomics – the economics of personal happiness and well-being – is being transposed at work, with more corporate care for productivity through employee workplace satisfaction. It is by now quite clear that, the happier people are at work, the better the organizational outcomes.

***

Five challenges, each of them compounded by the prolonged uncertainty of COVID-19 and by looming political tensions in various hotspots around the world. Businesses large and small are already critically affected by all. No business will be spared from at least one of the 5 factors; many will be impacted by several or all.

In 2022, companies must be ready to pivot, change strategies, and adjust course mid-route. That doesn’t mean the first step shouldn’t be, always and most critically, planning for these 5 challenges. Dwight Eisenhower was right: Plans are worthless, but planning is everything.

 

 




The supply chain crisis: What it is, why it happened, what to do

container g672f5bdac 1920

By Ilinca Anghelescu, EW Nutrition

“Supply chain issues” is now a buzzword that has gone beyond the realm of business into our lives and households. We know holiday gifts might be delayed because of supply chain issues, mobile phones or electric cars are facing essential parts shortages never before imagined, and entire companies’ production and delivery are affected by supply chain issues. Why is this happening and what can be done?

The supply chain crisis

Supply chains are nearly invisible – until something happens

The supply chain is an interdependent network of companies, individuals, databases, and actions whose ultimate goal is to ensure product or service delivery. The supply chain goes from the raw material to the end product or service that reaches the buyer. In most cases, this also includes the return of the goods or product servicing.

In the case of feed or food, for instance, a simplified version of the chain includes harvesting, storage, transportation, receiving and processing other raw materials, manufacturing, packaging, distribution, sale to the end customer, as well as potential returns at every stage along the way.

Supply chains are absolutely essential to the functioning of nearly everything in today’s society. If you eat tomatoes grown in your own garden, you are indeed outside the tomato supply chain; but your tools and fertilizer are probably not.

Supply chains are usually long, complex, highly interdependent, and often global because of cost pressure. No wonder, then, that one blow can bring down the whole domino chain. What is worse, the last year and a half brought not just one, but two concomitant blows.

Blow no. 1: Diminished capacity

The world is still reeling from the effects of COVID-19 – not just in terms of healthcare, but in terms of economic impact as well. In the immediate months after COVID-19 became a global concern, several things happened simultaneously to constrict the supply chain:

  • many factories limited the number of workers allowed on premises
  • ports (especially in China) shut down temporarily to halt the progress of the virus
  • face-to-face businesses shut down as a reaction to COVID-19 regulations

These and other similar measures put pressure on the global supply chain. Employee layoffs or furloughs, together with output decreases, meant fewer people could operate within the supply chain, which then translated into diminished production and delivery capacity.

To cope with the immediate state of things and with the predicted economic downturn, lots of companies (among those who did not shut down altogether) decided to reduce their output in order to save costs.

Blow no. 2: Increased demand

Despite the decreased demand for restaurant or hotel deliveries, lockdowns around the world brought about one other change: demand for endpoint deliveries soared. This would normally spell great news for producers, if only the supply chain weren’t in the way.

Supply chains are built to be as efficient as possible: fast, agile, and as economical as can be. In other words, “lean”. That also means that massive disruptions – whether positive or negative – are not easily handled. When demand for home deliveries went up dramatically, that would have been a good opportunity to beef up the delivery chain. Unfortunately, that increase in demand coincided with a limited personnel and product availability (because of blow no. 1), as well as shipping issues around the world.

How so? From the beginning of the pandemic until now, ships have been queuing up in ports around the world. The first Corona aftershock relocated production around the world and created unexpected demand. Containers were filled with high-margin goods (such as facial masks or home electronics) for the richer countries, while low-margin goods for other areas had to wait for free space.

Big Ship

This short-term unexpected move created competition for the limited number of containers on the market. Prices soared and containers traded at five times the cost of the previous year. (The Ever Given crisis in mid-2021 did not help, of course.) At the same time, unloading the cargo at the destination point had to be managed with reduced personnel, as pandemic restrictions still applied and docking availability remained the same. Ships had to wait for days to unload their cargo, despite high demand for their empty containers.

Collateral victim: semiconductors

It turns out, not surprisingly, that we have all grown more addicted to technology during the pandemic. Increased demand in home electronics, coupled with issues in the production of silicone-based parts (mostly led by a drive to reduce power consumption in China), led to a worldwide chip shortage that is affecting companies across many industries. Most notably, Tesla, Apple or Qualcomm are struggling to deliver orders and are readjusting their launch and delivery plans. If your mobile phone is delivered weeks late, blame it on the supply chain.

How to handle the supply-chain crisis

In 2022, keep your expectations low. The issues will not be resolved in a couple of months, so you must prepare for a year of very slow progress.

Prepare for at least two more years of high costs. Delivery delays will hit some markets more dramatically. Chip manufacturers have already announced shortage expectations throughout 2023, with lead times growing from 9 to 20+ weeks. Many large players in tech have announced plans to build their own plants or replace chips (as Tesla did) with different technologies. Do not be overly optimistic, though: such plans take a long time – and ports are reeling from a new wave of COVID-19 infections and restrictions. At this point, it is not just the shipping costs that are running a little wild, with no incentive for the cargo players to lower them; it is also the ports themselves. In the port of Los Angeles, as in many around the world, it is not unusual for cargo to wait a month out at sea to be given access to docking and unloading.

Order early. This seems like a commonsensical step – and it is, at this point. As mentioned above – do not expect things to be resolved quickly and painlessly. Protein markets are hit just as much as tech components; ship and truck deliveries will take a very long time to recover across all sectors. Demand is increasing and supply is still low – and slow. Order early and strategize to cover the new cost structures.

Explore options around the world. With China and Western Europe getting hit by new variants and suboptimal vaccination levels, the rest of the world remains to be explored. Options in richer countries, that once seemed too expensive, now may have an edge. Look closer to home rather to what was formerly a more cost-effective source. With shipping costs 3x to 10x what they were two years ago, the incentive is gone. (Even so, air freight is prohibitively expensive, so land access may be the most realistic option where accessible.)

Expand your capacity. Not everyone can start building plants at the drop of a hat, like Apple; but many companies can consider adding production lines or partnering with allies (and even competitors) to build or exploit resources. Since the supply chain issues are expected to last a couple more years on the optimistic side, it’s a good idea to explore your options not just in geography, but in partnerships for capacity as well.

Prepare for worse times before the good ones. It’s always a good idea to be prepared, but even more so now. Some ports are already closing again in early December (for instance, Dalian, China, took early measures against an outbreak) and the world is reacting to another potential large-scale lockdown.
On top of that, recession seems inevitable in many industries, and the new Corona mutations have already pushed the stock market down a few notches. Inflation has increased – 6.2% in the US in October versus last year, and in the eurozone the 4.1% inflation is the highest in the past 13 years. Some industries fare well simply because the market need is there (food and feed among them), but remember that the supply chain has companies across industries fighting for the same cargo space.

The answer to the supply chain challenge is to practice caution, spread risk, and actively seek out opportunities – including partnerships, new business, and unexpected collaborations. But then, these are good business practices at all times.




The fourth agricultural revolution is coming. Are you coming along?

field ge0aef824f 1920

By Ilinca Anghelescu, EW Nutrition

Momentous changes are happening in our lives and our industry. A lot of them are caused by globalization – COVID-19 or the effects of supply chain disruptions, among the more recent ones. Many more, though, that impact our personal and professional lives, are caused by digital advances omnipresent in contemporary society. And, although some view agribusinesses as a conservative industry, that has long not been the case. Mature companies have their eyes on the fourth agricultural revolution – and digitalization is a large part of it.

What is an agricultural revolution, anyway?

Agriculture has long been a motor of progress in human lives. Each agricultural revolution has brought about enormous improvements in living standards and consequently in life expectancy.

 fourth agricultural revolution

The first agricultural revolution took place about 10,000 ago, when hunter/gatherer communities began to settle and grow crops for sustenance. The revolution largely consisted of the domestication of plants and animals, as well as with agricultural processes. This revolution, it is widely believed, altered the course of human history and even biology: humans were able to form settlements and have predictable and nourishing food sources. Through that we also developed caries, body fat, and deficiencies in fiber and micronutrients.

The second agricultural revolution happened much later, from the mid-17th to the late 19th century, starting in the British Isles. The revolution consisted largely of enormous production improvements, not just from increased human labor but also from innovations such as advanced ploughing techniques, crop rotation, plus selective animal breeding, improved transportation, and land drainage. These developments helped the empire sustain a demographic, as well and geographic expansion.

The third agricultural revolution, in the 1950s and ‘60s, was prompted by enormous strides made in chemical fertilizers, irrigation, mechanization, and the development of new, high-yielding crops. These advances made possible a yield increase of over 40% in the course of less than 50 years. The changes were even more dramatic in developing nations, where the standard of life saw huge improvements with the advent of high-yield rice, wheat, and corn.

Naturally, poverty is still a major concern. However, if poverty has declined by 85% between the 1860s and 2020, we largely have agriculture to thank for.

The fourth revolution is already happening (somewhat)

The fourth agricultural revolution has been touted for years now. Part of the wider 4IR (Fourth Industrial Revolution), it is widely seen as the next dramatic improvement in the quality and quantity of agricultural and livestock output. The fourth agricultural revolution (alternatively, Agriculture 4.0) has been prompted, just like 4IR, first and foremost by digital advances. It relies, among many other innovations, on automation, gene editing, nutrigenics, traceability, and precision livestock farming.

In many cases, these advances are not yet fully developed, not fully embraced, or not yet fully integrated into one standardized system. However, the trend is unmistakable and unstoppable: the fourth agricultural revolution has started.

EW Nutrition is starting a series of articles on the challenges of digitalization and digital transformation in the livestock production industry and in industry in general. These advances in the way crops and livestock are being developed, grown, processed, and delivered from the farm to the end consumer’s home are indeed radical.

More important, however, is to prepare the ground for what’s coming. If organizations are not digitally savvy and technologically advanced, how will they deal with the abundance of data that Agriculture 4.0 relies on?

Digitization –> Digitalization –> Digital Transformation

There is a lot of confusion about the three terms, especially because digitization and digitalization are often used interchangeably. However, in terms of business strategy there are clear differences which could be clarified if we visualize the three terms as a funnel.

Digital Transformation

Digitization is the top level which most companies can easily reach. It refers to transferring a physical object to a digital representation. Think of it in terms of converting a 19th century novel to an e-book or turning a company ledger into an Excel spreadsheet.

Digitalization is the middle level of the funnel; fewer companies easily accede here, although it is nowadays an essential part of most businesses. Digitalization means using digital technologies to improve business processes and work more efficiently. Examples would be cloud storage for company files, virtual platforms for team conversations and project tracking, etc.

Digital transformation is transforming a business by using digital technologies, platforms, and processes to enable change, optimize the business model, and deliver better results for the organization. Examples would be an e-commerce company that leverages information from machine learning and combines it with big data across its vertical to collect prospect information, pool data into a SSoT (single source of truth), and conduct analytics that inform predictive algorithms.

Sure, not all companies can – or should – move completely into the bottom layer of the funnel. Digital transformation can be partial and should only be leveraged in companies and industries where it makes sense.

Where exactly is your company along the funnel? Assessing your current status is essential to developing a strategy to meet Agriculture 4.0 head on. And meeting it head on we must; it is no longer an option, but a necessity for organizations and businesses to remain relevant in tomorrow’s world.

 

Why are digitally mature companies better?

Regardless of the vertical in which you are operating, in 2022 your organization should be able to check most of the boxes suggested by Deloitte in the table above.

At the most superficial level, digital maturity is a good predictor of improved financial performance. The more digitally savvy companies are cashing in on their maturity.

Behind this predictive factor, however, is the reason why. Digitally mature companies

  • can better leverage the richness of data in their industry and ancillary verticals
    • better analytics-led decision-making
    • better positioning through market data
    • better product development through predictive analysis
  • can better hold together distributed businesses
    • provide tools, platforms, and processes that bring together distributed employees
    • collect information from multiple points into a SSoT (for instance, distributed ledgers or even less advanced, real-time tools)
  • can inspire more confidence in current and future employees
    • provide a sense of oneness and belonging through common tools and platforms
      inspire confidence through responsiveness and clear and transparent processes

 

Why are digitally mature companies better

How do companies begin on the road to digitalization?

The road to digitalization begins, first and foremost, with the will to change. Digitalization is change – and change is not easy, especially in more conservative industries or companies. Once the management understands the benefits of undertaking this process (which benefits are confirmed in multiple studies), there are several roads to choose from. However, to enable the process of digitalization in general, McKinsey identifies five key factors:

  • having the right, digital-savvy leaders in place
  • building capabilities for the workforce of the future
  • empowering people to work in new ways
  • giving day-to-day tools a digital upgrade
  • communicating frequently via traditional and digital methods

Once the organization has undergone the basics of change, the company can then strategize on how to take advantage of the trends in its specific market. In the animal production industry, these trends – briefly mentioned at the beginning – amount to a revolution.

The revolution is already underway. For the moment, however, it is developing on so many disparate fronts that there is no formal coherence and very little oversight. Because of that, but most especially because of digital immaturity, very few companies or institutions are prepared to deal with what is coming. Now is the time to get in shape and get the process started.

A peek at what’s coming

As we grew over the past few years, both organically and through M&As, we faced a few challenges that many will be familiar with:

  • a global team of 30+ nationalities that had to rally around one mission
  • over 400 diverse, vocal, highly individual employees
  • divergent value chains depending on country, region, and offered solution
  • a large work-from-home or distributed team in various locations, closely working with on-site colleagues
  • 10+ time zones
  • a sometimes dizzyingly fast pace of change

We were fortunately prepared to deal with most of the challenges. Even so, we were not 100% prepared. We have learned enormously in the course of these years and are now a few steps ahead.

Over the next couple of months, EW Nutrition is going to look at some of the most important topics around digitalization in general, digitalization in livestock and feed production, and obstacles to building a digitally mature company:

  • Digitalization-enabled change in distributed companies
  • The digitalization of animal farming
  • Digitalization in the workspace: Hurdles and benefits
  • …and more.

The process is never complete, of course. We just hope that, by learning in public and sharing our discoveries, we make our journey clearer – and perhaps other companies’ journey easier.

 


References

FAO. The role of digital technologies in livestock traceability and trade, 2020

Gartner. Manufacturing Industry Scenarios in 2023: Leading Through Innovation, published September 2018, updated February 2020.

Gartner, Top Strategic Technology Trends for 2021, 2020

Gurumurthy, Ragu and David Schatsky, Pivoting to digital maturity: Seven capabilities central to digital transformation, Deloitte Insights, March 13, 2019

Gurumurthy, Ragu et al., Uncovering the connection between digital maturity and financial performance, Deloitte Insights, May 2020, 2020

Kane, Gerald C., “Accelerating digital innovation inside and out: Agile teams, ecosystems, and ethics,” MIT Sloan Management Review and Deloitte Digital, June 4, 2019

McKinsey. Unlocking success in digital transformations, October 2018

Moatsos, Michail. Global extreme poverty: Present and past since 1820. In How Was Life? Volume II : New Perspectives on Well-being and Global Inequality since 1820, OECD 2021

Sharma, Deepak et al., Customer-centric digital transformation: Making customer success integral to the new organization, Deloitte Insights, September 5, 2019

Schwab, Klaus, The Fourth Industrial Revolution: what it means, how to respond, World Economic Forum, 14 Jan 2016

World Economic Forum, Innovation with a Purpose: The role of technology innovation in accelerating food systems transformation, January 2018

World Economic Forum, Technology Futures: Projecting the Possible, Navigating What’s Next. Insight Report, April 2021