Minimizar los efectos colaterales de la administración de antibióticos en granjas porcinas: Una ley de equilibrio

Por la Dra. Merideth Parke BvSC, directora técnica regional de cerdos, EW Nutrition

La salud y bienestar de los animales nos preocupa y los antibióticos son un componente crucial en el tratamiento de enfermedades causadas por patógenos susceptibles.

Sin embargo, la administración de antibióticos en la cría de cerdos se ha convertido en una práctica común para prevenir infecciones bacterianas, reducir las pérdidas económicas y aumentar la productividad.

Todas las aplicaciones de antibióticos tienen consecuencias colaterales importantes, lo que lleva a una consideración más profunda de su aplicación no esencial. Este artículo tiene como objetivo cuestionar la elección de administrar antibióticos mediante la exploración del impacto más amplio que tienen los antibióticos en la salud animal y humana, las economías y el medio ambiente.

Los antibióticos alteran las comunidades microbianas

Los antibióticos no se dirigen específicamente a las bacterias patógenas, pues también afectan a los microorganismos benéficos, alterando el equilibrio natural de las comunidades microbianas de los animales. Reducen la diversidad y abundancia del microbiota de todas las bacterias susceptibles, tanto beneficiosas como patógenas, muchas de las cuales desempeñan funciones cruciales en la digestión, la función cerebral, el sistema inmunitario y la salud respiratoria y general. Los desequilibrios del microbiota resultantes pueden presentarse en animales que muestran cambios en el rendimiento de la salud asociados con sistemas no objetivo, como el microbioma nasal, respiratorio o intestinal 10, 9, 16. El eje microbioma intestino-respiratorio está bien establecido en los mamíferos. La salud, la diversidad y el suministro de nutrientes del microbiota intestinal afectan directamente a la salud y la función respiratorias 15. Específicamente en los cerdos, la modulación del microbioma intestinal se considera una herramienta adicional en el control de enfermedades respiratorias como el PRRS debido a la relación entre la digestión de los nutrientes,  la inmunidad sistémica y la respuesta a las infecciones pulmonares 12.

El efecto colateral de la administración de antibióticos, que altera no solo las comunidades microbianas de todo el animal, sino también los sistemas corporales relacionados, debe considerarse significativo en el contexto de una salud, bienestar y productividad óptimos de los animales.

El uso de antibióticos puede provocar la liberación de toxinas

La consideración de la patogénesis de las bacterias individuales es fundamental para mitigar los posibles efectos colaterales directos asociados con la administración de antibióticos. Por ejemplo, en los casos de bacterias productoras de toxinas, cuando los animales son medicados por vía oral o parenteral, la mortalidad puede aumentar debido a la liberación asociada de toxinas cuando un gran número de bacterias productoras de toxinas mueren rápidamente 3.

La modulación de la función cerebral puede ser fundamental

Numerosos estudios en animales han investigado el papel modulador de los microbios intestinales en el eje intestino-cerebro. Un mecanismo identificado que se observa con los cambios inducidos por los antibióticos en el microbiota fecal es la disminución de las concentraciones de los precursores del neurotransmisor hipotalámico, la 5-hidroxitriptamina (serotonina) y la dopamina 6. Los neurotransmisores son esenciales para la comunicación entre las células nerviosas. Se ha demostrado que los animales con depleción del microbiota inducida por antibióticos orales experimentan cambios en la función cerebral, como déficits de memoria espacial y comportamientos de tipo depresivo.

El procesamiento de materiales de desecho puede verse afectado

La tecnología de tratamiento anaeróbico está bien aceptada como un proceso de gestión factible para las aguas residuales de las granjas porcinas debido a su costo relativamente bajo con el beneficio de la producción de bioenergía. Además, el volumen mucho menor de lodo que queda después del procesamiento anaeróbico facilita aún más la eliminación segura y reduce el riesgo asociado con la eliminación de desechos porcinos que contienen antibióticos residuales 5.

La excreción de antibióticos en los desechos animales y la consiguiente presencia de antibióticos en las aguas residuales pueden afectar el éxito de las tecnologías de tratamiento anaeróbico, lo que ya podría demostrarse mediante varios estudios 8, 13. El grado en que los antibióticos afectan este proceso variará según el tipo, la combinación y la concentración. Además, la presencia de antibióticos en el sistema anaeróbico puede provocar un cambio de población hacia microbios menos sensibles o el desarrollo de cepas con genes resistentes a los antibióticos 1, 14.

Los antibióticos pueden transferirse a la cadena alimentaria humana

Las autoridades reguladoras especifican los períodos de abstinencia detallados después del tratamiento con antibióticos. Sin embargo, los residuos de los antibióticos y sus metabolitos pueden persistir en los tejidos animales, como la carne y la leche, incluso después de este período. Estos residuos pueden entrar en la cadena alimentaria humana si no se vigilan y controlan adecuadamente.

La exposición prolongada a niveles bajos de antibióticos a través del consumo de productos de origen animal puede contribuir a la aparición de bacterias resistentes a los antibióticos en los seres humanos, lo que supone un riesgo importante para la salud pública.

Contaminación del medio ambiente

Como ya se ha mencionado anteriormente, la administración de antibióticos al ganado puede provocar la liberación de estos compuestos al medio ambiente. Los antibióticos pueden entrar en el suelo, las vías fluviales y los ecosistemas circundantes a través de las excreciones de los animales tratados, la eliminación inadecuada del estiércol y la escorrentía de los campos agrícolas. Una vez en el medio ambiente, los antibióticos pueden contribuir a la selección y propagación de bacterias resistentes a los antibióticos en las comunidades bacterianas naturales. Esta contaminación representa un riesgo potencial para la vida silvestre, incluidas las aves, los peces y otros organismos acuáticos, así como para el equilibrio ecológico más amplio de los ecosistemas afectados.

Cada uso de antibióticos puede crear resistencia

Una de las preocupaciones ampliamente investigadas asociadas con el uso de antibióticos en el ganado es el desarrollo de resistencia a los antibióticos. El desarrollo de la resistencia a los antimicrobianos no requiere el uso prolongado de antibióticos y, junto con otros efectos colaterales, también se produce cuando los antibióticos se utilizan dentro de las aplicaciones terapéuticas o preventivas recomendadas.

Las mutaciones genéticas pueden dotar a las bacterias de capacidades que las hacen resistentes a ciertos antibióticos (por ejemplo, un mecanismo para destruir o liberar el antibiótico). Esta resistencia se puede transferir a otros microorganismos, como se ve en el efecto del carbadox en Escherichia coli 7 y Salmonella enterica 2 y el efecto carbadox y metronidazol en Brachyspira hyodysenteriae 16. Además, hay indicios de que la resistencia al zinc de los estafilococos de origen animal está asociada con la resistencia a la meticilina proveniente de los seres humanos 4.

En consecuencia, la eficacia de los antibióticos en el tratamiento de las infecciones en los animales objetivo se ve comprometida y aumenta el riesgo de exposición a patógenos resistentes para los animales en contacto y entre especies, incluidos los seres humanos.

Hay soluciones alternativas disponibles

Para minimizar con éxito los efectos colaterales de la administración de antibióticos en el ganado, es esencial contar con una estrategia unificada con el apoyo de todas las partes interesadas del sistema de producción. La Asociación Europea para la Innovación — Agricultura 11 resume de manera concisa un proceso de este tipo diciendo que requiere…

  1. Cambiar la mentalidad y los hábitos humanos: este es el primer paso y decisivo para una reducción exitosa de los antimicrobianos
  2. Mejorar la salud y el bienestar de los cerdos: Prevención de enfermedades con programas óptimos de cría, higiene, bioseguridad, vacunación y apoyo nutricional.
  3. Alternativas antibióticas efectivas: para este propósito, se consideran las fitomoléculas, los pro/prebióticos, los ácidos orgánicos y las inmunoglobulinas.

En general, es fundamental implementar prácticas responsables de administración de antibióticos. Esto incluye limitar el uso de antibióticos al tratamiento de infecciones diagnosticadas con un antibiótico eficaz y eliminar su uso como promotores del crecimiento o con fines profilácticos.

Mantener el equilibrio es de crucial importancia.

Si bien los antibióticos desempeñan un papel crucial para garantizar la salud y el bienestar del ganado, su administración extensiva en la industria agrícola tiene efectos colaterales que no se pueden ignorar. El desarrollo de la resistencia a los antibióticos, la contaminación ambiental, la alteración de las comunidades microbianas y la posible transferencia de residuos de antibióticos a los alimentos plantean desafíos importantes.

La adopción de prácticas responsables de administración de antibióticos, incluida la supervisión veterinaria, los programas de prevención de enfermedades, las prácticas óptimas de cría de animales y las alternativas a los antibióticos, puede lograr un equilibrio entre la salud animal, el rendimiento productivo eficiente y las preocupaciones ambientales y de salud humana.

La colaboración de las partes interesadas, incluidos los agricultores, los veterinarios, los responsables políticos, la industria y los consumidores, es esencial para implementar y apoyar estas medidas para crear una industria ganadera sostenible y resiliente.

References

  1. Angenent, Largus T., Margit Mau, Usha George, James A. Zahn, and Lutgarde Raskin. “Effect of the Presence of the Antimicrobial Tylosin in Swine Waste on Anaerobic Treatment.” Water Research 42, no. 10–11 (2008): 2377–84. https://doi.org/10.1016/j.watres.2008.01.005.
  2. Bearson, Bradley L., Heather K. Allen, Brian W. Brunelle, In Soo Lee, Sherwood R. Casjens, and Thaddeus B. Stanton. “The Agricultural Antibiotic Carbadox Induces Phage-Mediated Gene Transfer in Salmonella.” Frontiers in Microbiology 5 (2014). https://doi.org/10.3389/fmicb.2014.00052.
  3. Castillofollow, Manuel Toledo, Rocío García Espejofollow, Alejandro Martínez Molinafollow, María Elena  Goyena Salgadofollow, José Manuel Pintofollow, Ángela Gallardo Marínfollow, M. Toledo, et al. “Clinical Case: Edema Disease – the More I Medicate, the More Pigs Die!” $this->url_servidor, October 15, 2021. https://www.pig333.com/articles/edema-disease-the-more-i-medicate-the-more-pigs-die_17660/.
  4. Cavaco, Lina M., Henrik Hasman, Frank M. Aarestrup, Members of MRSA-CG:, Jaap A. Wagenaar, Haitske Graveland, Kees Veldman, et al. “Zinc Resistance of Staphylococcus Aureus of Animal Origin Is Strongly Associated with Methicillin Resistance.” Veterinary Microbiology 150, no. 3–4 (2011): 344–48. https://doi.org/10.1016/j.vetmic.2011.02.014.
  5. Cheng, D.L., H.H. Ngo, W.S. Guo, S.W. Chang, D.D. Nguyen, S. Mathava Kumar, B. Du, Q. Wei, and D. Wei. “Problematic Effects of Antibiotics on Anaerobic Treatment of Swine Wastewater.” Bioresource Technology 263 (2018): 642–53. https://doi.org/10.1016/j.biortech.2018.05.010.
  6. Köhler, Bernd, Helge Karch, and Herbert Schmidt. “Antibacterials That Are Used as Growth Promoters in Animal Husbandry Can Affect the Release of Shiga-Toxin-2-Converting Bacteriophages and Shiga Toxin 2 from Escherichia Coli Strains.” Microbiology 146, no. 5 (2000): 1085–90. https://doi.org/10.1099/00221287-146-5-1085.
  7. Loftin, Keith A., Cynthia Henny, Craig D. Adams, Rao Surampali, and Melanie R. Mormile. “Inhibition of Microbial Metabolism in Anaerobic Lagoons by Selected Sulfonamides, Tetracyclines, Lincomycin, and Tylosin Tartrate.” Environmental Toxicology and Chemistry 24, no. 4 (2005): 782–88. https://doi.org/10.1897/04-093r.1.
  8. Looft, Torey, Heather K Allen, Brandi L Cantarel, Uri Y Levine, Darrell O Bayles, David P Alt, Bernard Henrissat, and Thaddeus B Stanton. “Bacteria, Phages and Pigs: The Effects of in-Feed Antibiotics on the Microbiome at Different Gut Locations.” The ISME Journal 8, no. 8 (2014a): 1566–76. https://doi.org/10.1038/ismej.2014.12.
  9. Looft, Torey, Heather K. Allen, Thomas A. Casey, David P. Alt, and Thaddeus B. Stanton. “Carbadox Has Both Temporary and Lasting Effects on the Swine Gut Microbiota.” Frontiers in Microbiology 5 (2014b). https://doi.org/10.3389/fmicb.2014.00276.
  10. Nasralla, Meisoon. “EIP-Agri Concept.” EIP-AGRI – European Commission, September 11, 2017. https://ec.europa.eu/eip/agriculture/en/eip-agri-concept.html.
  11. Niederwerder, Megan C. “Role of the Microbiome in Swine Respiratory Disease.” Veterinary Microbiology 209 (2017): 97–106. https://doi.org/10.1016/j.vetmic.2017.02.017.
  12. Poels, J., P. Van Assche, and W. Verstraete. “Effects of Disinfectants and Antibiotics on the Anaerobic Digestion of Piggery Waste.” Agricultural Wastes 9, no. 4 (1984): 239–47. https://doi.org/10.1016/0141-4607(84)90083-0.
  13. Shimada, Toshio, Julie L. Zilles, Eberhard Morgenroth, and Lutgarde Raskin. “Inhibitory Effects of the Macrolide Antimicrobial Tylosin on Anaerobic Treatment.” Biotechnology and Bioengineering 101, no. 1 (2008): 73–82. https://doi.org/10.1002/bit.21864.
  14. Sikder, Md. Al, Ridwan B. Rashid, Tufael Ahmed, Ismail Sebina, Daniel R. Howard, Md. Ashik Ullah, Muhammed Mahfuzur Rahman, et al. “Maternal Diet Modulates the Infant Microbiome and Intestinal Flt3l Necessary for Dendritic Cell Development and Immunity to Respiratory Infection.” Immunity 56, no. 5 (May 9, 2023): 1098–1114. https://doi.org/10.1016/j.immuni.2023.03.002.
  15. Slifierz, Mackenzie Jonathan. “The Effects of Zinc Therapy on the Co-Selection of Methicillin-Resistance in Livestock-Associated Staphylococcus Aureus and the Bacterial Ecology of the Porcine Microbiota,” 2016.
  16. Stanton, Thaddeus B., Samuel B. Humphrey, Vijay K. Sharma, and Richard L. Zuerner. “Collateral Effects of Antibiotics: Carbadox and Metronidazole Induce VSH-1 and Facilitate Gene Transfer among Brachyspira HyodysenteriaeApplied and Environmental Microbiology 74, no. 10 (2008): 2950–56. https://doi.org/10.1128/aem.00189-08.



Escenarios de nutrición de lechones para la eliminación de AGP

piglets farm scaled

 

Durante los últimos 60 años, los antibióticos han jugado un papel esencial en la industria porcina como una herramienta de la que dependen los productores de cerdos para controlar enfermedades y reducir la mortalidad. Además, también se sabe que los antibióticos mejoran el rendimiento, incluso cuando se utilizan en dosis subterapéuticas.

La percepción del uso excesivo de antibióticos en la producción porcina, especialmente como promotores del crecimiento (AGP), ha suscitado preocupaciones por parte de los gobiernos y la opinión pública, con respecto a la aparición de bacterias multirresistentes, lo que supone una amenaza no solo para la salud animal sino también para la humana. Los desafíos planteados con respecto a los AGPs y la necesidad de su reducción en la ganadería llevaron al desarrollo de estrategias combinadas como el “Enfoque de una sola salud”, donde la salud animal, la salud humana y el medio ambiente se entrelazan y deben ser considerados en cualquier sistema de producción animal.

En este escenario de intensos cambios, los porcicultores deben evaluar estrategias para adecuar sus sistemas de producción a la presión global para reducir los antibióticos y aún así tener una producción rentable.

Muchas de estas preocupaciones se centran en la nutrición de los lechones, ya que el uso de niveles subterapéuticos de antimicrobianos como promotores del crecimiento sigue siendo una práctica habitual para prevenir la diarrea post-destete en muchos países (Heo et al., 2013; Waititu et al., 2015). Teniendo esto en cuenta, éste artículo sirve como una guía práctica para los productores de cerdos a través de la eliminación de AGP y sus impactos en el rendimiento y la nutrición de los lechones Se abordarán tres puntos cruciales:

  1. ¿Por qué la eliminación de AGP es una tendencia mundial?
  2. ¿Cuáles son las principales consecuencias para la nutrición y el rendimiento de los lechones?
  3. ¿Qué alternativas tenemos para garantizar un rendimiento óptimo de los lechones en este escenario?

Eliminación de AGP: un problema global

Las discusiones sobre el futuro de la industria porcina incluyen comprender cómo y por qué la eliminación de AGP se convirtió en un tema tan importante en todo el mundo. Históricamente, los países europeos han liderado discusiones sobre la eliminación de AGP de la producción ganadera. En Suecia, los AGP fueron prohibidos en sus granjas desde 1986. Esta medida culminó con la prohibición total de los AGP en la Unión Europea en 2006. Otros países siguieron los mismos pasos. En Corea, los AGP se eliminaron de las operaciones ganaderas en 2011. Estados Unidos también está haciendo esfuerzos para limitar los AGP y el uso de antibióticos en las granjas de cerdos, como se publicó en una guía revisada por la Administración de Alimentos y Medicamentos (FDA, 2019). En 2016, Brasil y China prohibieron la colistina, y el gobierno brasileño también anunció la eliminación de la tilosina, tiamulina y la lincomicina en 2020. Además, países como India, Vietnam, Bangladesh, Buthan e Indonesia han anunciado estrategias para las restricciones de AGP (Cardinal et al., 2019; Davies y Walsh, 2018).

El principal argumento contra los AGP y los antibióticos en general es el riesgo ya mencionado de desarrollo de resistencia a los antimicrobianos, lo que limita las herramientas disponibles para controlar y prevenir enfermedades en la salud humana. Este punto se sustenta en el hecho de que los patógenos resistentes no son estáticos ni exclusivos del ganado, sino que también pueden propagarse a los seres humanos (Barbosa y Bünzen, 2021). Además, se han planteado preocupaciones con respecto al hecho de que los humanos también los mismos antibióticos que en la producción porcina, principalmente antibióticos de tercera generación. La presión sobre los productores de cerdos aumentó y hoy es multifactorial: desde los departamentos reguladores oficiales y las partes interesadas en diferentes niveles, que deben considerar las preocupaciones del público sobre la resistencia a los antimicrobianos y su impacto en el ganado, la salud humana y la sostenibilidad de las operaciones de la granja (Stein, 2002). ).

Es evidente que el proceso de reducción o prohibición de antibióticos y AGP en la producción porcina ya es un problema global y aumenta a medida que adquiere nuevas dimensiones. As Cardinal et al. (2019) sugieren que ese proceso es irreversible. Las empresas que quieran acceder al mercado mundial de la carne de cerdo y cumplir con las regulaciones cada vez más estrictas sobre los AGP deben reinventar sus prácticas. Sin embargo, esto no es nada nuevo para la industria porcina. Por ejemplo, los productores de cerdos de EE. UU. y Brasil han adaptado sus operaciones para no usar ractopamina para cumplir con los requisitos de los mercados europeo y asiático. Por lo tanto, podemos estar seguros de que la industria porcina mundial encontrará una forma de reemplazar los antibióticos.

Con eso en mente, el siguiente paso es evaluar las consecuencias de la abstinencia de AGP de las dietas para cerdos y cómo eso afecta el rendimiento general de los animales.

Consecuencias en la salud y el rendimiento de los lechones

Los productores de cerdos saben muy bien que el destete de los cerdos es un desafío. Los lechones están expuestos a muchos factores de estrés biológico durante ese período de transición, incluida la introducción de los lechones a una nueva composición del alimento (pasando de la leche a dietas basadas en plantas), la separación abrupta de la cerda, el transporte y la manipulación, la exposición a nuevas interacciones sociales y las adaptaciones ambientales, para nombrar unos pocos. Tales factores estresantes y desafíos fisiológicos pueden afectar negativamente la salud, el rendimiento del crecimiento y la ingesta de alimento debido a disfunciones del sistema inmunológico (Campbell et al. 2013). Los antibióticos han sido una herramienta muy poderosa para mitigar esta caída del rendimiento. La pregunta entonces es, ¿cuán difícil puede llegar a ser este proceso cuando los AGP se eliminan por completo?

Muchos ganaderos de todo el mundo todavía dependen de los AGP para que el período de destete sea menos estresante para los lechones. Un beneficio principal es que los antibióticos reducirán la incidencia de PWD, con un rendimiento de crecimiento mejorado posterior (Long et al., 2018). El proceso de destete puede crear las condiciones ideales para el crecimiento excesivo de patógenos, ya que el sistema inmunológico de los lechones no está completamente desarrollado y, por lo tanto, no puede defenderse. Los patógenos presentes en el tracto gastrointestinal pueden provocar diarrea post-destete (PWD), entre muchas otras enfermedades clínicas (Han et al., 2021). La PWD es causada por Escherichia coli y es un problema global en la industria porcina, ya que compromete la ingesta de alimento y el rendimiento del crecimiento a lo largo de la vida del cerdo, siendo también una causa común de pérdidas debido a la muerte de los lechones (Zimmerman, 2019).

Cardinal et al. (2021) también destacan que la hipótesis de una respuesta inflamatoria intestinal reducida es una explicación de la relación positiva entre el uso de AGP y el aumento de peso de los lechones.  Pluske y col. (2018) señalan que la sobreestimulación del sistema inmunológico puede afectar negativamente la tasa de crecimiento de los cerdos y la eficiencia del uso del alimento. El proceso es fisiológicamente costoso en términos de energía y también puede causar una producción excesiva de prostaglandina E2 (PGE2), lo que lleva a fiebre, anorexia y reducción del rendimiento de los cerdos. Por ejemplo, Mazutti et al. (2016) mostraron un aumento de peso de hasta 1,74 kg por cerdo en animales que recibieron colistina o tilosina en niveles subterapéuticos durante todo el vivero. Helm y col. (2019) encontraron que los cerdos medicados con clortetraciclina en niveles subterapéuticos aumentaron la ganancia diaria promedio en 0.110 kg / día. Ambos atribuyen el mayor peso a la disminución de los costos de activación inmunitaria determinados por la acción de los AGP sobre la microflora intestinal.

Por otro lado, aunque los AGP son una alternativa para el control de enfermedades bacterianas, también han demostrado ser potencialmente perjudiciales para la microbiota beneficiosa y tienen efectos duraderos causados por disbiosis microbiana – abundancia de patógenos potenciales, como Escherichia y Clostridium; y una reducción de bacterias beneficiosas, como Bacteroides, Bifidobacterium y Lactobacillus (Guevarra et al., 2019; Correa-Fiz, 2019). Además, los AGP redujeron la diversidad de la microbiota, lo que se acompañó de un empeoramiento de la salud general en los lechones (Correa-Fiz, 2019).

También es importante resaltar que el estrés abrupto causado por la transición del amamantamiento al destete tiene consecuencias en diversos aspectos de la función y estructura del intestino, que incluyen hiperplasia de las criptas, atrofia de las vellosidades, inflamación intestinal y menor actividad de la enzima epitelial del borde en cepillo (Jiang et al., 2019). Además, el movimiento de bacterias del intestino al cuerpo puede ocurrir cuando se deteriora la función de la barrera intestinal, lo que resulta en diarrea severa y retraso en el crecimiento. Por lo tanto, las estrategias de nutrición y manejo durante ese período son críticas, y los nutrientes intestinales clave deben usarse para respaldar la función intestinal y el rendimiento del crecimiento.

Con todo eso, es más que nunca necesario comprender mejor la composición intestinal de los lechones y encontrar estrategias para promover la salud intestinal son medidas críticas para prevenir el crecimiento excesivo y la colonización de patógenos oportunistas y, por lo tanto, poder reemplazar los AGP (Castillo et al. al., 2007).

Alternativas viables para proteger a los lechones

La buena noticia es que la industria porcina ya cuenta con alternativas efectivas que pueden reemplazar los productos AGP y garantizar un buen desempeño animal.

Las inmunoglobulinas de la yema de huevo (IgY) han demostrado ser una alternativa exitosa a la nutrición de los lechones destetados. Las investigaciones han demostrado que los anticuerpos del huevo mejoran la microbiota intestinal de los lechones, haciéndola más estable (Han et al., 2021). Además, IgY optimiza la inmunidad y el rendimiento de los lechones al tiempo que reduce la aparición de diarrea causada por E. coli, rotavirus y Salmonella sp. (Li et al., 2016).

Las fitomoléculas (PM) también son alternativas potenciales para la eliminación de AGP, ya que son compuestos bioactivos con características antibacterianas, antioxidantes y antiinflamatorias (Damjanović-Vratnica et al., 2011; Lee y Shibamoto, 2001). Cuando se utilizan para la suplementación de la dieta de los lechones, las fitomoléculas optimizan la salud intestinal y mejoran el rendimiento del crecimiento (Zhai et al., 2018).

Han et al. (2021) evaluó una combinación de suplementos de IgY (Globigen® Jump Start, EW Nutrition) y fitomoléculas (Activo®, EW Nutrition) en las dietas de lechones destetados. Los resultados de ese estudio (Tabla 1 y 2) mostraron que esta estrategia disminuye la incidencia de PWD y coliformes, aumenta la ingesta de alimento y mejora la morfología intestinal de los lechones destetados, haciendo de esa combinación un reemplazo viable de AGP.

Table 1. Effect of dietary treatments on the growth performance of weaned pigs challenged with E. coli K88 (SOURCE: Han et al., 2021).

Table 2. Effect of dietary treatments on the post-weaning diarrhea incidence of weaned pigs challenged with E. coli K88 (%) (SOURCE: Han et al., 2021).

 

Un ensayo realizado en el Instituto de Ciencias Animales de la Academia China de Ciencias Agrícolas, China, complementó a los cerdos destetados desafiados por E. coli K88 con una combinación de PM (Activo®, EW Nutrition) e IgY (Globigen® Jump Start). El ensayo informó que esta combinación (AC / GJS) mostró menos casos de diarrea que en los animales del grupo positivo (PC) durante la primera semana después de la exposición y una incidencia de diarrea similar a la del grupo AGP durante los días 7 y 17 después de la exposición (Figura 1).

Figura 1 – Incidencia de diarrea (%). NC: grupo negativo, PC: grupo positivo, AGP: suplementación con AGP, AC / GJS: combinación de PM (Activo, EW Nutrition) e IgY (Globigen Jump Start).

 

El mismo ensayo también mostró que la combinación de estos aditivos no antibióticos fue tan eficiente como los AGP para mejorar el rendimiento de los cerdos bajo desafíos entéricos bacterianos, mostrando efectos positivos sobre el peso corporal, la ganancia diaria promedio (Figura 2) y la tasa de conversión alimenticia (Figura 2, 3).

Figura 2 – Peso corporal (kg) y ganancia diaria promedio (g). NC: grupo negativo, PC: grupo positivo, AGP: suplementación con AGP, AC / GJS: combinación de PM (Activo, EW Nutrition) e IgY (Globigen Jump Start).

Figura 3 – Tasa de conversión alimenticia. NC: grupo negativo, PC: grupo positivo, AGP: suplementación con AGP, AC / GJS: combinación de PM (Activo, EW Nutrition) e IgY (Globigen Jump Start).

Rosa et al. También destacan los múltiples beneficios del uso de IgY en las estrategias de nutrición de los lechones. (2015), Figura 4 y Prudius (2021).

Figura 4. Efecto de los tratamientos sobre el rendimiento de lechones recién destetados. Las medias (± SEM) seguidas de las letras a, b, c en el mismo grupo de columnas difieren (p <0.05). NC (no desafiado con ETEC y dieta con 40 ppm de colistina, 2300 ppm de zinc y 150 ppm de cobre). Tratamientos desafiados con ETEC: GLOBIGEN® (0,2% de GLOBIGEN®); DPP (4% de plasma seco porcino); y PC (dieta basal) (FUENTE: Rosa et al., 2015).

Conclusiones

La eliminación de AGP y la reducción general de antibióticos parece ser la única dirección que debe tomar la industria porcina mundial para el futuro. Desde la primera línea, los productores de cerdos exigen productos rentables sin AGP que no comprometan el rendimiento del crecimiento y la salud animal. Junto con esta demanda, encontrar las mejores estrategias para la nutrición de los lechones en este escenario es fundamental para minimizar los efectos adversos del estrés del destete. Con eso en mente, alternativas como las inmunoglobulinas de huevo y las fitomoléculas son opciones comerciales que ya están mostrando grandes resultados y beneficios, ayudando a los productores porcinos a dar un paso más en el futuro de la nutrición porcina.

 

Referencias

Damjanović-Vratnica, Biljana, Tatjana Đakov, Danijela Šuković and Jovanka Damjanović, “Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro,” Czech Journal of Food Sciences 29, no. 3 (2011): 277-284.

Pozzebon da Rosa, Daniele, Maite de Moraes Vieira, Alexandre Mello Kessler, Tiane Martin de Moura, Ana Paula Guedes Frazzon, Concepta Margaret McManus, Fábio Ritter Marx, Raquel Melchior and Andrea Machado Leal Ribeiro, “Efficacy of hyperimmunized hen egg yolks in the control of diarrhea in newly weaned piglets,” Food and Agricultural Immunology 26, no. 5 (2015): 622-634. https://doi.org/10.1080/09540105.2014.998639

Freitas Barbosa, Fellipe, Silvano Bünzen. Produção de suínos em épocas de restrição aos antimicrobianos–uma visão global. In: Suinocultura e Avicultura: do básico a zootecnia de precisão (2021): 14-33. https://dx.doi.org/10.37885/210203382

Correa-Fiz, Florencia, José Maurício Gonçalves dos Santos, Francesc Illas and Virginia Aragon, “Antimicrobial removal on piglets promotes health and higher bacterial diversity in the nasal microbiota,” Scientific reports 9, no. 1 (2019): 1-9. https://doi.org/10.1038/s41598-019-43022-y

Food and Drug Administration [FDA]. 2019. Animal drugs and animal food additives. Avaliable at: https://www.fda.gov/animalveterinary/development-approval-process/veterinary-feeddirective-vfd

Stein, Hans H , “Experience of feeding pigs without antibiotics: a European perspective,” Animal Biotechnology 13 no. 1(2002): 85-95. https://doi.org/10.1081/abio-120005772

Helm, Emma T, Shelby Curry, Julian M Trachsel, Martine Schroyen, Nicholas K Gabler, “Evaluating nursery pig responses to in-feed sub-therapeutic antibiotics”, PLoS One 14 no. 4 (2019). https://doi.org/10.1371/journal.pone.0216070.

Hengxiao Zhai, Hong Liu, Shikui Wang, Jinlong Wu and Anna-Maria Kluenter, “Potential of essential oils for poultry and pigs,” Animal Nutrition 4, no. 2 (2018): 179-186. https://doi.org/10.1016/j.aninu.2018.01.005

Pluske, J. R., Kim, J. C., Black, J. L. “Manipulating the immune system for pigs to optimise performance,” Animal Production Science 58, no 4, (2018): 666-680. https://doi.org/10.1071/an17598

Zimmerman, Jeffrey, Locke Karriker, Alejandro Ramirez, Kent Schwartz, Gregory Stevenson, Jianqiang Zhang (Eds.), “Diseases of Swine,” 11 (2019), Wiley Blackwell.

Campbell, Joy M, Joe D Crenshaw & Javier Polo, “The biological stress of early weaned piglets”, Journal of animal science and biotechnology 4, no. 1 (2013):1-4. https://doi.org/10.1186/2049-1891-4-19

Jung M. Heo, Opapeju, F. O., Pluske, J. R., Kim, J. C., Hampson, D. J., & Charles M. Nyachoti, “Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post‐weaning diarrhoea without using in‐feed antimicrobial compounds,” Journal of animal physiology and animal nutrition 97, no. 2 (2013): 207-237. https://doi.org/10.1111/j.1439-0396.2012.01284.x

Junjie Jiang, Daiwen Chen, Bing Yu, Jun He, Jie Yu, Xiangbing Mao, Zhiqing Huang, Yuheng Luo, Junqiu Luo, Ping Zheng, “Improvement of growth performance and parameters of intestinal function in liquid fed early weanling pigs,” Journal of animal science 97, no. 7 (2019): 2725-2738. https://doi.org/10.1093/jas/skz134

Cardinal, Kátia Maria, Ines Andretta, Marcos Kipper da Silva, Thais Bastos Stefanello, Bruna Schroeder and Andréa Machado Leal Ribeiro, “Estimation of productive losses caused by withdrawal of antibiotic growth promoter from pig diets – Meta-analysis,” Scientia Agricola 78, no.1 (2021): e20200266. http://doi.org/10.1590/1678-992X-2020-0266

Cardinal, Katia Maria, Marcos Kipper, Ines Andretta and Andréa Machado Leal Ribeiro, “Withdrawal of antibiotic growth promoters from broiler diets: Performance indexes and economic impact,” Poultry science 98, no. 12 (2019): 6659-6667. https://doi.org/10.3382/ps/pez536

Mazutti, Kelly, Leandro Batista Costa, Lígia Valéria Nascimento, Tobias Fernandes Filho, Breno Castello Branco Beirão, Pedro Celso Machado Júnior, Alex Maiorka, “Effect of colistin and tylosin used as feed additives on the performance, diarrhea incidence, and immune response of nursery pigs”, Semina: Ciências Agrárias 37, no. 4 (2016): 1947. https://doi.org/10.5433/1679-0359.2016v37n4p1947

Lee, Kwang-Geun and Takayuki Shibamoto, “Antioxidant activities of volatile components isolated from Eucalyptus species,” Journal of the Science of Food and Agriculture 81, no. 15 (2001): 1573-1579. https://doi.org/10.1002/jsfa.980

Long, S. F., Xu, Y. T., Pan, L., Wang, Q. Q., Wang, C. L., Wu, J. Y., … and Piao, X. S. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets,” Animal Feed Science and Technology 235, (2018): 23-32.

Davies, Madlen and Timothy R. Walsh, “A colistin crisis in India,” The Lancet. Infectious diseases 18, no. 3 (2018): 256-257. https://doi.org/10.1016/s1473-3099(18)30072-0

Castillo, Marisol, Susana M Martín-Orúe, Miquel Nofrarías, Edgar G Manzanilla and Josep Gasa, “Changes in caecal microbiota and mucosal morphology of weaned pigs”, Veterinary microbiology 124, no. 3-4 (2007): 239-247. https://doi.org/10.1016/j.vetmic.2007.04.026

Dyar, Oliver J, Jia Yin, Lilu Ding, Karin Wikander, Tianyang Zhang, Chengtao Sun, Yang Wang, Christina Greko, Qiang Sun and Cecilia Stålsby Lundborg, “Antibiotic use in people and pigs: a One Health survey of rural residents’ knowledge, attitudes and practices in Shandong province, China”, Journal of Antimicrobial Chemotherapy 73, no. 10 (2018): 2893-2899. https://doi.org/10.1093/jac/dky240

Prudius, T. Y., Gutsol, A. V., Gutsol, N. V., & Mysenko, O. O “Globigen Jump Start usage as a replacer for blood plasma in prestarter feed for piglets,” Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, Series: Agricultural sciences 23, no. 94 (2021): 111-116. https://doi.org/10.32718/nvlvet-a9420

Guevarra, Robin B., Jun Hyung Lee, Sun Hee Lee, Min-Jae Seok, Doo Wan Kim, Bit Na Kang, Timothy J. Johnson, Richard E. Isaacson and Hyeun Bum, “Piglet gut microbial shifts early in life: causes and effects,” Journal of animal science and biotechnology 10, no. 1 (2019): 1-10. https://dx.doi.org/10.1186%2Fs40104-018-0308-3

Waititu, Samuel M., Jung M. Heo, Rob Patterson and Charles M. Nyachoti, “Dose-response effects of in-feed antibiotics on growth performance and nutrient utilization in weaned pigs fed diets supplemented with yeast-based nucleotides,” Animal Nutrition 1, no. 3 (2015): 166-169. https://doi.org/10.1016/j.aninu.2015.08.007

Xiaoyu Li, Ying Yao, Xitao Wang, Yuhong Zhen, Philip A Thacker, Lili Wang, Ming Shi, Junjun Zhao, Ying Zong, Ni Wang, Yongping Xu. “Chicken egg yolk antibodies (IgY) modulate the intestinal mucosal immune response in a mouse model of Salmonella typhimurium infection,” International immunopharmacology 36, (2016) 305-314. https://doi.org/10.1016/j.intimp.2016.04.036

Yunsheng Han, Tengfei Zhan, Chaohua Tang, Qingyu Zhao, Dieudonné M Dansou, Yanan Yu, Fellipe F Barbosa, Junmin Zhang. Effect of Replacing in-Feed Antibiotic Growth Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia coli K88. Animals 11, no. 5 (2021): 1292. https://doi.org/10.3390/ani11051292




Por qué necesitamos reemplazar el óxido de zinc para combatir la diarrea post-destete

SOW Schmidtkord DSC2695 website

Los lechones experimentan un estrés significativo cuando son destetados de la cerda y cambian la dieta, haciéndolos susceptibles a trastornos gastrointestinales. Principalmente durante las dos primeras semanas después del destete, es probable que sufran diarrea post-destete (DPD). La DPD es un problema importante para los productores de cerdos en todo el mundo: conduce a una deshidratación severa, retraso en el crecimiento y tasas de mortalidad de hasta el 20-30%. El tratamiento y los costes laborales adicionales reducen aún más la rentabilidad de la granja y requieren intervenciones antibióticas no deseadas.

Óxido de zinc: una herramienta eficaz pero muy problemática

Desde principios de la década de 1990, el óxido de zinc (ZnO) se ha utilizado para controlar la diarrea posterior al destete y promover el crecimiento en lechones, principalmente en dosis terapéuticas de 2500 a 3000 ppm. Su modo de acción aún no se comprende del todo; Es probable que influyan los efectos sobre los procesos inmunitarios o metabólicos, la microbiota alterada o el metabolismo posabsorción. Lo que está claro es que el uso de ZnO en la producción porcina europea ha aumentado considerablemente desde que la UE prohibió el uso de antibióticos como promotores del crecimiento en 2006 para frenar el desarrollo de resistencia a los antimicrobianos.

Los cerdos dependen de un suministro continuo de zinc. Entre otras funciones, este oligoelemento constituye un componente funcional de alrededor de 300 enzimas bioquímicas, por lo que es fundamental para la mayoría de los procesos metabólicos y, por extensión, para una salud, producción y reproducción óptimas.  Por lo tanto, las dietas modernas para cerdos incluyen suplementos de zinc para satisfacer las necesidades de los animales. La Autoridad Europea de Seguridad Alimentaria (EFSA) sugiere actualmente que un nivel total de 150 ppm de zinc en el pienso coincide con la necesidad fisiológica de zinc de los animales. Las preocupaciones de la EFSA están relacionadas únicamente con las preocupaciones medioambientales que surgen de las altas dosis farmacológicas de ZnO.

Estas preocupaciones son realmente graves: después de todo, el zinc es un metal pesado. Demasiado zinc es tóxico para el animal, por lo que su fisiología asegura que se excrete una ingesta excesiva de zinc. La biodisponibilidad y absorción del zinc a partir del óxido de zinc es particularmente baja. Por lo tanto, la mayor parte del zinc que se  da a los lechones de esta manera se acumula en su purín, que se usa ampliamente como fertilizante orgánico para suelos agrícolas.

La aplicación continua de purín aumenta gradualmente las concentraciones de zinc en la capa superficial del suelo; la lixiviación y la escorrentía conducen a la contaminación de las aguas subterráneas, superficiales y sedimentarias. Como el zinc no es volátil ni degradable, es solo cuestión de tiempo antes de que las concentraciones produzcan efectos ecotóxicos, incluidos los cultivos alimentarios, la vida acuática y el agua potable. Las medidas clásicas de mitigación, como diluir el estiércol o mantener ciertas distancias mínimas entre las áreas de aplicación y las aguas superficiales, solo pueden ralentizar la acumulación ambiental de zinc, no prevenirla.

Prohibición de la UE: ZnO se eliminará gradualmente para 2022

En 2017, la Agencia Europea de Medicamentos (EMA), la agencia de la UE responsable de la evaluación científica, la supervisión y el control de la seguridad de los medicamentos, incluidos los medicamentos veterinarios, realizó un análisis general de riesgo-beneficio para el ZnO. Llegó a la conclusión de que los beneficios de prevenir la diarrea en los cerdos no superan los importantes riesgos ambientales causados por la contaminación por zinc. Para junio de 2022, todos los estados miembros de la UE tendrán que retirar las autorizaciones de comercialización de los medicamentos veterinarios que contienen óxido de zinc que se administran por vía oral a especies productoras de alimentos.

En su decisión, el Comité de Medicamentos de Uso Veterinario de la EMA también señala el riesgo de que, debido a la co-resistencia, el uso de óxido de zinc pueda promover el desarrollo de resistencia a los antimicrobianos. Se ha demostrado que altas dosis de suplementos de zinc aumentan la proporción de E. coli y Salmonella resistentes a múltiples fármacos, dos de los patógenos más importantes en la producción porcina.

Además, los estudios muestran que el zinc excesivo puede acumularse en el hígado, el páncreas y el suero sanguíneo, y que reduce permanentemente la población de lactobacilos de la flora intestinal. ¿Con qué consecuencias para el rendimiento en la fase de engorde? Por lo tanto, hay muchas razones por las que deshacerse del óxido de zinc es algo bueno y, en última instancia, dará como resultado una producción porcina aún mejor y más sostenible, pero, por supuesto, solo si se aplican estrategias de reemplazo efectivas para controlar la DPD y aumentar el rendimiento de los lechones.

Hacia cero ZnO: los aditivos alimentarios inteligentes optimizan la salud intestinal

La búsqueda de alternativas de ZnO nos lleva de regreso al principio, al tracto gastrointestinal desafiado de los lechones. Durante sus primeros tres meses de vida, el aparato gastrointestinal (TGI) de los cerdos se somete a un complejo proceso de maduración de sus sistemas nerviosos epitelial, inmunológico y aparato entérico. Solo una vez que todos ellos están completamente desarrollados, el intestino es capaz de realizar sus funciones normales (digestión, absorción de nutrientes, inmunidad, etc.), al mismo tiempo que proporciona una barrera eficaz contra los patógenos, antígenos y toxinas en la luz intestinal.

A diferencia de lo que ocurre en la naturaleza, donde el destete ocurre alrededor del momento en que las funciones del TGI han madurado, el destete en la producción porcina comercial tiene lugar durante este período de desarrollo vulnerable. La diarrea posterior al destete es en última instancia una consecuencia de la disbiosis intestinal, un estado de desequilibrio en el microbioma intestinal que a su vez es inducido por los factores estresantes dietéticos, conductuales y ambientales de la fase de destete (como separación de la cerda, vacunaciones, transporte, , introducción de piensos sólidos).

Por lo tanto, el control de las DPD comienza con el manejo de estos factores estresantes, lo que incluye garantizar una ingesta suficiente de calostro, cambios graduales de alimentación y una higiene meticulosa en la lechonera. Fundamentalmente, la dieta de destete debe apoyar de manera óptima la salud intestinal. Las soluciones inteligentes de aditivos alimentarios pueden

  • reducir la carga patógena en el tracto gastrointestinal del lechón,
  • fortalecer la funcionalidad de barrera intestinal en la maduración del lechón, e
  • inducir selectivamente el desarrollo de microorganismos beneficiosos dentro del microbioma.

Una combinación sinérgica de fitomoléculas, ácidos grasos de cadena media, glicéridos de ácidos y prebióticos logra estos objetivos de manera confiable y rentable. Gracias a sus propiedades antimicrobianas, antiinflamatorias y digestivas, estos ingredientes seleccionados apoyan eficazmente a los lechones durante esta fase crítica de su desarrollo intestinal posnatal, al tiempo que aumentan su consumo de alimento.

En la última década, el sector porcino europeo se ha adaptado con éxito a la prohibición de 2006 de los antibióticos promotores del crecimiento mediante mejoras significativas en las prácticas de gestión y alimentación. Eliminar el óxido de zinc es un desafío ambicioso, pero con el apoyo de aditivos alimentarios funcionales específicos, los productores podrán preparar a sus lechones para un rendimiento  y salud fuertes, sostenibles y sin ZnO.

Referencias

Amezcua, Rocio, Robert M. Friendship, Catherine E. Dewey, Carlton Gyles, and John M. Fairbrother. “Presentation of postweaning Escherichia coli diarrhea in southern Ontario, prevalence of hemolytic E. coli serogroups involved, and their antimicrobial resistance patterns.” Canadian Journal of Veterinary Research 66, no. 2 (April 2002): 73-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC226986/.

Bednorz, Carmen, Kathrin Oelgeschläger, Bianca Kinnemann, Susanne Hartmann, Konrad Neumann, Robert Pieper, Astrid Bethe, et al. “The Broader Context of Antibiotic Resistance: Zinc Feed Supplementation of Piglets Increases the Proportion of Multi-Resistant Escherichia Coli in Vivo.” International Journal of Medical Microbiology 303, no. 6-7 (2013): 396–403. https://doi.org/10.1016/j.ijmm.2013.06.004.

Brugger, Daniel, and Wilhelm M. Windisch. “Strategies and Challenges to Increase the Precision in Feeding Zinc to Monogastric Livestock.” Animal Nutrition 3, no. 2 (March 24, 2017): 103–8. https://doi.org/10.1016/j.aninu.2017.03.002.

Burrough, Eric R., Carson De Mille, and Nicholas K. Gabler. “Zinc Overload in Weaned Pigs: Tissue Accumulation, Pathology, and Growth Impacts.” Journal of Veterinary Diagnostic Investigation 31, no. 4 (June 6, 2019): 537–45. https://doi.org/10.1177/1040638719852144.

De Mille, Carson, Emma T. Helm, Eric R. Burrough, and Nicholas K. Gabler. “Zinc oxide does not alter ex vivo intestinal integrity or active nutrient transport in nursery pigs.” Paper presented at the Zero Zinc Summit, Copenhagen, Denmark, June 17-18, 2019. https://svineproduktion.dk/Services/-/media/3E0A1D2A4CAC409FAA6212B91DFEA537.ashx.

Moeser, Adam J., Calvin S. Pohl, and Mrigendra Rajput. “Weaning Stress and Gastrointestinal Barrier Development: Implications for Lifelong Gut Health in Pigs.” Animal Nutrition 3, no. 4 (December 2017): 313–21. https://doi.org/10.1016/j.aninu.2017.06.003.

Rhouma, Mohamed, Francis Beaudry, William Thériault, and Ann Letellier. “Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives.” Frontiers in Microbiology 7 (November 11, 2016): Article 1789. https://doi.org/10.3389/fmicb.2016.01789.

Starke, Ingo C., Robert Pieper, Konrad Neumann, Jürgen Zentek, and Wilfried Vahjen. “The Impact of High Dietary Zinc Oxide on the Development of the Intestinal Microbiota in Weaned Piglets.” FEMS Microbiology Ecology 87, no. 2 (February 1, 2014): 416–27. https://doi.org/10.1111/1574-6941.12233.

 

 

 




La Encapsulación: Un moderno aditivo fitogénico para alimentos marca la diferencia

feed quality pellets kv yellow

Por el equipo técnico de EW Nutrition

 

 En diversos estudios científicos realizados en los últimos años se ha demostrado que los extractos secundarios de plantas mejoran la digestión, tienen efectos positivos sobre la salud intestinal y ofrecen protección contra el estrés oxidativo. Su uso como aditivo para alimentos se ha consolidado y existen diversas mezclas, adaptadas a los distintos objetivos.

Sin embargo, su uso en alimentos peletizados ha sido criticado durante algún tiempo.  En particular, se critica la reproducibilidad insatisfactoria de las influencias positivas sobre los parámetros de producción. Las causas invocadas para la pérdida de beneficios cuantificables son las materias primas inadecuadamente estandarizadas, así como las pérdidas incontrolables y desiguales de las valiosas fitomoléculas contenidas durante la producción de alimentos compuestos.

modern phytogenic feed additive makes all the difference

Los mecanismos de distribución influyen en los beneficios del producto

La industria de producción animal lleva mucho tiempo intentando reducir al mínimo indispensable su necesidad de antibióticos. Como resultado, se han utilizado aditivos naturales o idénticos a los naturales, para alimentos buscando el mantenimiento preventivo de la salud. Estas categorías incluyen numerosas sustancias conocidas en la alimentación humana en el ámbito de las plantas aromáticas y las hierbas, o en la medicina tradicional como hierbas medicinales.

Los primeros productos disponibles de estos aditivos fitogénicos se añadían simplemente a los alimentos compuestos. Las partes deseadas de la planta, al igual que las especias y hierbas en la alimentación humana, se trituraban o molían en la premezcla. Alternativamente, los extractos vegetales líquidos se colocaron previamente sobre un soporte adecuado (por ejemplo, tierra de diatomeas) para incorporarlos después a la premezcla. Estos procedimientos suelen ser poco precisos y pueden ser responsables de la difícil reproducibilidad de los resultados positivos mencionada al principio.

Otro factor negativo que no debe subestimarse es la concentración y composición variable de las sustancias activas de las plantas. Esta composición depende esencialmente de las condiciones del lugar, como el clima, el suelo, la comunidad y el momento de la cosecha [Ehrlinger, 2007]. Por lo tanto, en un aceite obtenido a partir del tomillo, el contenido del fenol timol relevante puede variar entre el 30% y el 70% [Lindner, 1987]. Estas fluctuaciones extremas se evitan con los aditivos fitogénicos modernos mediante el uso de ingredientes idénticos a los naturales.

La encapsulación eficaz es clave para la estabilidad

La pérdida de las valiosas fitomoléculas que nos ocupan también puede remontarse al origen natural de las materias primas. Algunas fitomoléculas (por ejemplo, el cineol) son volátiles incluso a bajas temperaturas. En el uso medicinal habitual, este efecto se emplea principalmente con productos fríos. Así, los aceites esenciales, como los de menta y eucalipto, pueden añadirse al agua caliente e inhalarse a través del vapor resultante.

En el proceso de peletización en la producción de alimentos compuestos, son habituales temperaturas de entre 60°C y 90°C, dependiendo del tipo de producción. El proceso puede durar varios minutos hasta que termine el enfriamiento. Los aditivos sensibles pueden inactivarse o volatilizarse fácilmente durante este paso.

Una solución técnica para conservar los aditivos sensibles a la temperatura es utilizar una cubierta protectora. Se trata, por ejemplo, de una práctica ya establecida para las enzimas. Este tipo de encapsulación ya se utiliza con éxito en productos de alta calidad con aditivos fitogénicos. Las sustancias volátiles deben estar protegidas por un recubrimiento de grasa o almidón para que la mayoría (>70%) de los ingredientes pueda encontrarse también tras el peletizado.

Desgraciadamente, no es posible una protección completa con esta cápsula, ya que esta simple cubierta protectora puede romperse por la presión mecánica durante la molienda y la peletización.  Los nuevos métodos de microencapsulación, tipo esponja, reducen aún más las pérdidas. En este proceso de microencapsulación tipo esponja, si se destruye una cápsula, sólo se daña una pequeña proporción de las cámaras llenas de fitomoléculas volátiles.

Alta protección y recuperación con Ventar D

Un nuevo tipo de encapsulación, desarrollado por EW Nutrition para su uso en alimentos, aporta una mayor optimización. Los resultados demuestran que la tecnología implementada en Ventar D garantiza tasas de recuperación muy elevadas de las fitomoléculas sensibles, incluso en condiciones de peletización exigentes.

En un estudio comparativo con productos encapsulados establecidos en el mercado, Ventar D fue capaz de alcanzar los mayores índices de recuperación en los tres escenarios probados (70°C, 45 seg; 80°C, 90 seg; 90°C, 180 seg). En la prueba de estrés a una temperatura de 90°C durante 180 segundos, se recuperó al menos el 84% de las fitomoléculas valiosas, mientras que los productos de comparación oscilaron entre el 70% y el 82%. Se alcanzó una tasa de recuperación constante del 90% para Ventar D en condiciones más sencillas.

Phytomolecule recovery rates under processing conditions, relative to mash baseline (100%)

Índices de recuperación de fitomoléculas en condiciones de transformación, en relación con la línea de base del puré (100%)

Liberación de principios activos en lugares específicos

Los principales patógenos gastrointestinales (como Clostridium spp., Salmonella spp., E. coli, etc.) están presentes en todo el tracto gastrointestinal después del proventrículo. Esto provoca infecciones o lesiones en diferentes sitios de preferencia, llegando hasta los ciegos. Cualquier solución basada en alimentos debe tener un profundo efecto antimicrobiano. Sin embargo, también es crucial que los principios activos se liberen a través del tracto gastrointestinal, para contribuir mejor a la salud intestinal.

El exclusivo e innovador sistema de suministro utilizado para Ventar D aborda específicamente este punto, algo que muchas tecnologías de recubrimiento tradicionales no hacen.  Otras tecnologías de encapsulación tienden a liberar el principio activo demasiado pronto o demasiado tarde (dependiendo de la composición del recubrimiento). Los ingredientes activos de Ventar D llegan a todos los puntos del tracto gastrointestinal y ejercen efectos antimicrobianos, favoreciendo una salud intestinal óptima y mejorando el rendimiento.

Económica y ecológicamente sostenible

En el pasado, las pérdidas mencionadas en la producción de alimentos compuestos y especialmente en el peletizado se describían en gran medida como inevitables. Para obtener el efecto deseado de las valiosas fitomoléculas en el producto acabado, se recomendaba una mayor dosificación de productos, lo que aumentaba los costos para los usuarios finales y la huella de CO2 asociada, reduciendo la sostenibilidad en general.

La moderna tecnología de encapsulación utilizada en Ventar D ofrece ahora una protección significativamente mejor para las valiosas fitomoléculas y, además de la ventaja económica, también ofrece un uso más eficiente de los recursos necesarios para la producción.

References

Hashemi, S. R .; Davoodi, H .; 2011; Herbal plants and their derivatives as growth and health promoters in animal nutrition; Vet Res Commun (2011) 35: 169-180; DOI 10.1007 / s11259-010-9458-2; Springer Science + Business Media BV, 2011

Ehrlinger, M., 2007: Phytogenic additives in animal nutrition. Inaugural dissertation. Munich: Veterinary Faculty of the Ludwig Maximilians University in Munich.

Lindner, U., 1987: Aromatic plants – cultivation and use. Contribution to the special show – Medicinal and Spice Plants (Federal Garden Show 1987), Teaching and Research Institute for Horticulture Auweiler-Friesdorf, Düsseldorf.