Phytogenic additives: An ROI calculation

shutterstock 1443136526 pullet scaled e1635251702725

By Ruturaj Patil, Global Product Manager – Phytogenics, EW Nutrition

Global trade in agricultural products has a direct impact on the added value in regional broiler production. Due to fluctuating meat and feed prices, a tight profit margin can melt away quickly. Changes such as the use of cheaper raw materials, implemented to deal with reduced margins, may negatively affect flock health, creating a vicious cycle: If the flock also experiences increased disease pressure, the financially critical situation worsens.

Phytogenic additives: An ROI calculation

What can the right phytogenic feed additive deliver for broiler producers?

It is essential to improve broiler gut health, as only healthy birds will perform and allow producers to be profitable. Producers can maintain flock performance through preventive management measures, a consistent hygiene concept, and the use of high-quality feed. For unproblematic flocks, the same measures also positively affect profit, generating a healthy return on investment (ROI).

What affects your return on investment?

In broiler production, the cost of feed is highest, with a share of 60 – 70 % of the total production costs. The proportion tends to be higher in markets that rely on importing feed raw materials (Tandoğan and Çiçek, 2016).

Let us take an example: With a compound feed price of 300 € / t as the basis, an increase of 10 € / t results in a profit reduction of 0.016 € / kg live weight. On the other hand, an improvement in feed conversion from 1.60 to 1.55 results in a financial advantage of 0.015 € / kg live weight. The best possible feed efficiency is always desirable to keep production costs low.

Another risk factor for high-yield broiler production lives in the poultry intestines: the most significant “invisible” losses result from subclinical necrotic enteritis (Clostridium perfringens). This disease worsens the feed conversion on average by 11 % (Skinner et al., 2010). In the previous example, this would reduce feed efficiency from 1.60 to 1.78 points and reduce the contribution margin by 0.054 € / kg live weight. In addition,  a live weight reduction of up to 12 % can be observed (Skinner et al., 2010). It is, therefore, critical to stabilizing gut health to reduce the risk of subclinical necrotic enteritis.

Practice prevention for a secure return on investment

The prophylactic use of antibiotics in compound feed was a well-known reality for decades. With the EU-wide ban on the use of antibiotic growth promoters, the occurrence of multi-resistant bacteria, and a globally increased demand for antibiotic-free chickens, producers now have had to cut down on antibiotic use.

For this reason, a lot of research has been conducted into alternative measures for maintaining good broiler health. Studies have confirmed that setting up a comprehensive hygiene concept to reduce the formation of biofilms on stable surfaces and reduce the recirculation of pathogens is a solid basis. At every production stage, irregularities can be detected through a meticulous control of performance parameters and illness symptom-centered health monitoring. Diseases can either be avoided or at least recognized earlier through targeted measures, and treatment can be carried out more efficiently.

broiler performanceA thorough hygiene concept and careful monitoring at every production stage are key to ensuring broiler performance.

Feed additives for intestinal stabilization

Hygienically impeccable compound feed is the wish of every animal producer to promote the development of a balanced intestinal flora. However, the quality of the available raw materials is subject to fluctuations and can therefore not be 100 % anticipated. Consequently, producers are now commonly balancing these uncertainties by using feed additives, which positively influence the intestinal flora. These products must prove their positive effects in scientific studies before they can be used in practice.

An effective solution: Encapsulated phytogenic feed additives

Studies have found that certain phytomolecules, which are secondary plant metabolites, can support broiler gut health. By stimulating digestive enzyme activities and stabilizing the gut microflora, feed utilization improves, and broilers are less prone to developing enteric disorders (Zhai et al., 2018).

The encapsulation of these naturally volatile substances in a high-performance delivery system is critical for the success of a phytogenic feed additive. This protective cover, which is often a simple coating, provides good storage stability in many cases. However, in addition to the high temperatures, mechanical forces also act on these coatings during pelleting. The combination of pressure and temperature can break the protective coating of the product and lead to the loss of active substances.

A complete solution: How Ventar D maximizes your ROI

Because of the difficulties mentioned, the use of modern delivery system technologies is therefore necessary. EW Nutrition has many years of experience in the development of phytogenic products. Due to an original, innovative delivery system technology, Ventar D can offer high pelleting stability for optimal improvement of animal performance.

In particular, the positive influence of the phytogenic feed additive Ventar D on intestinal health under increased infection pressure was assessed in multiple studies. In two studies carried out in the United Kingdom, birds were challenged by being housed on used litter harvested from a previous trial. Moreover, increasing levels of rye were introduced into the diet, adding a nutritional challenge to provoke an increased risk of intestinal infections in the broilers. The use of 75 g of Ventar D per t compound feed increased the EPEF (European Production Efficiency Factor) by 4.1% and feed efficiency from 1.63 to 1.60.

A complete solution: How Ventar D maximizes your ROI

With Ventar D use at 100 g / t compound feed under comparable conditions, EPEF increased by 8.9 %, and feed efficiency improved by 5 points (0.05), compared to a non-supplemented control group (NC).

Another study was carried out in the USA. In addition to performance parameters, data on intestinal health were also recorded. In the group fed with Ventar D (100 g / t compound feed), 50 % fewer necrotic enteritis-related lesions of the intestinal wall were found after 42 days. Compared to the group fed with Ventar D, the broilers of the control group showed a performance decrease of 11.8 % with an 8% lower final fattening weight and a 3 points poorer FCR.

Necrotic enteristis lesion scores

Based on the results of the above studies, the ROI for Ventar D due to the improvement in feed efficiency by 3 and 5 points could be 1:3.5 and 1:6.5, respectively. Similarly, the net returns for using Ventar D could be 0.007 and 0.013 € / kg live weight, given the 3 and 5 points improvements in feed efficiency. The ROI for Ventar D use could be even higher thanks to additional benefits such as improvements in litter condition and foot pad lesions, reduced veterinary cost, etc., depending on the prevailing challenges.

The future of feeding is here

The first study results for Ventar D underscore that, if combined and delivered right, phytomolecules can transform broiler performance from inside the gut. Ventar D’s stable delivery system ensures a constant amount of active molecules in targeted intestinal sites and, therefore, supports a favorable intestinal flora. With Ventar D supplementation, subclinical intestinal infections due to C. perfringens or other enteric bacteria can be very well kept in check, ensuring improved broiler productivity and production profitability.

 

References

Skinner, James T., Sharon Bauer, Virginia Young, Gail Pauling, and Jeff Wilson. “An Economic Analysis of the Impact of Subclinical (Mild) Necrotic Enteritis in Broiler Chickens.” Avian Diseases 54, no. 4 (December 1, 2010): 1237–40. https://doi.org/10.1637/9399-052110-reg.1.

Tandoğan, M., and H. Çiçek. “Technical Performance and Cost Analysis of Broiler Production in Turkey.” Revista Brasileira de Ciência Avícola 18, no. 1 (2016): 169–74. https://doi.org/10.1590/18069061-2015-0017.

Zhai, Hengxiao, Hong Liu, Shikui Wang, Jinlong Wu, and Anna-Maria Kluenter. “Potential of Essential Oils for Poultry and Pigs.” Animal Nutrition 4, no. 2 (June 2018): 179–86. https://doi.org/10.1016/j.aninu.2018.01.005




EW Nutrition launches Pretect D to support poultry gut health during challenging periods

shutterstock 766401004 scaled

VISBEK, 28 September – EW Nutrition announces the launch of a novel gut health solution for poultry. Pretect D, a proprietary blend of phytomolecules, helps maintain bird performance and farm profitability.

Trials indicate that Pretect D offers natural support even during Eimeria-related challenges, making it an effective addition to programs focused on gut health issues.

“EW Nutrition is a front runner when it comes to innovations driving lower use of antibiotics and harmful chemicals in the animal production industry,” says Michael Gerrits, Managing Director. “The introduction of Pretect D signifies our commitment to helping customers make livestock production more sustainable through best-in-class natural solutions.”

Research with Pretect D conducted around the globe, in research institutes and under commercial conditions, evidenced improved body weight and lower feed conversion rate. EW Nutrition is also following up on initial results indicating significant oocyst count reduction.

“Poultry producers are affected by reduced animal performance and high costs for preventive and therapeutic control,” says Madalina Diaconu, Product Manager for Pretect D. “What our product brings to the market is an ability to support the natural defenses of birds. We’re also investigating our product’s ability to impair the growth cycle of the Eimeria population.” Pretect D is developed to be used in combination with vaccines, ionophores and chemicals, as part of the shuttle or rotation program.

 

About EW Nutrition

For the global animal production and feed industries, EW Nutrition offers innovative, comprehensive solutions for gut health, feed quality, pigmentation, digestibility, on-farm performance and more.

Headquartered in Germany, with R&D and manufacturing facilities around the world, EW Nutrition owns the entire value chain, from development and scale-up to production, distribution, and support in 90+ markets.

 




What poultry producers need to know about coccidiosis control

art65 header scaled

By Madalina Diaconu, Product Manager Pretect D, and Dr. Ajay Awati, Global Category Manager Gut Health & Nutrition, EW Nutrition 

 

Coccidiosis is one of the most devastating enteric challenge in the poultry industry costing over over 14 billion US$ per year (Blake et al., 2020). In the early days of  intensive poultry production, outbreaks of Eimeria tenella, were most destructive. Eimeria tenella is a coccidia species that causes severe haemorrhages and hypovolemic shock, leading to a fatal outcome for the affected bird. 

Poultry producers need to control the performance and welfare issues caused by subclinical coccidiosisPoultry producers need to control the performance and welfare issues caused by subclinical coccidiosis

Understanding and managing coccidiosis in poultry

However, today, subclinical coccidiosis accounts for even more of production losses due to intestinal cells injuries: lower body weights, higher feed conversion rates, lack of flock uniformity, failures on skin pigmentation and, at the end mortality. Variation in the supply and quality of animal feed exacerbates the issue and compromises farm profitability even more. To tackle this challenge, we need to understand the basics of coccidiosis control in poultry and what options producers have to manage coccidiosis risks.

From Eimeria infection to disease

Coccidiosis is a disease caused by protozoan parasites, mainly of the genus Eimeria, that are located in the small and large intestines. Being very resistant and highly contagious, these protozoa are easily transmitted by various routes (via feed, litter, water, soil, material, insects, and wild animals).

Coccidia are present in all livestock species. However, the infection is particularly severe in poultry. The health consequences can be significant: loss of appetite, reduction in feed intake, increased FCR, enteritis, hemorrhagic diarrhea, and mortality. The most common species of Eimeria in broilers are: E. acervulina, E. mitis, E. maxima, E. brunetti, E. necatrix, E. praecox, and E. tenella. They are widely found in broiler productions across the globe (McDougall & Reid, 1991).

Sporulated oocyst of Eimeria maxima and E. Acervulina Figure 1: Sporulated oocyst of Eimeria maxima and E. Acervulina (40 x)

The pathogenesis of infection varies from mild to severe and is largely dependent on the magnitude of infection. Coccidiosis outbreaks are related to multiple factors that, together, promote a severe infestation in the farm.

Within poultry, the highest economic impact is in broilers, where the most common species of Eimeria are E. acervulina, E. maxima, E. tenella and E. necatrix, which all show high virulence. However, pathogenicity is influenced by host genetics, nutritional factors, concurrent diseases, age of the host and the particular species of the Eimeria (Conway & McKenzie, 2007).

Interaction of factors that promote coccidia outbreaksFigure 2: Interaction of factors that promote coccidia outbreaks

The Eimeria infection starts with the ingestion of protozoa that are at a sporulated stage. Once inside the gut, the protozoa liberate the sporozoites. This infective form can get into enterocytes and then begin a massive reproduction, killing thousands of intestinal cells. (Olabode et al., 2020; Shivaramaiah et al., 2014)

Eimeria spp. life cycleFigure 3: Eimeria spp. life cycle

The reproduction potential depends on the coccidia species. E. acervulina, E. mitis and E. praecox have the highest reproduction rate. This characteristic is closely related to their short life cycle.

In broilers, coccidiosis usually occurs after 21 days of age. The infection spreads gradually from day 1 already, depending on species of Eimeria and their virulence. A typical progression of coccidiosis in broilers is shown in Figure 4.Typical development of a coccidia infection in relation to broiler feed phasesFigure 4: Typical development of a coccidia infection in relation to broiler feed phases

Coccidiosis control in poultry: Strategy guidelines

The intrinsic characteristics of coccidiosis makes this parasite unique and many times frustrating to control. Resistance to available coccidiostats makes this task even harder.  Good farm management, litter hygiene, and the use of control coccidiosis programs such as shuttle and rotation are functional measures to prevent clinical coccidiosis. Successful control strategies specifically recognize the importance of monitoring, use anticoccidial drugs wisely, and include vaccines where applicable.

Monitoring

The first step is to establish a strict monitoring program in all stages of production, including the feed mill. It is important to verify that therapeutics are included in the feed in an adequate form and quantity, and that the follow-up in the field takes place.

Field monitoring should be frequent and in line with the operation’s coccidiosis management program. Field monitoring is a complementary work that collates clinical, necropsy, and faeces findings to closely track the disease situation.

Coccidiosis control in poultry operations needs to include rigorous monitoringCoccidiosis control in poultry operations needs to include rigorous monitoring

Anticoccidial drugs

Since the middle of the 20th century, chemotherapeutic agents have offered the best way to control coccidia. However, unbridled use of anti-coccidial drugs and the emergence of the new resistant field strains of coccidia have made it increasingly challenging to control coccidiosis with commonly available coccidiostat drugs.

The coccidiostats have been classified in two groups: ionophores, molecules obtained from microbiological fermentation, and chemicals, synthetic compounds. The mode of action of ionophores is to interfere with the membrane ion exchange, killing the extracellular stages (sporozoites and or merozoites) as they expend energy to maintain the osmotic balance. Chemical compounds can have an anticoccidial effect even on extracellular and intracellular stages (Sumano López & Gutiérrez Olvera, 2005).

However, resistance development is limiting their effectiveness, and certain compounds cannot be used in older birds or in hot environments. Moreover, government regulations often include anti-coccidial drugs in bans on antibiotics use. This does not mean that these drugs are not crucial to controlling this disease, but it is important to use alternative tools: they help make a coccidiosis control program not only less dependent on anticoccidial drugs but also more robust.

Vaccines

There are two commercial kinds of coccidia vaccines; the first one uses natural strains. These Eimeria are selected from field outbreaks, show a medium pathogenicity, and allow for a controlled replication of a coccidia infection. The second kind of vaccines include attenuated strains; these are precocious strains and birds usually show low or no post-vaccinal reactions.

The management of coccidia vaccines is the principal challenge for using this tool to control coccidia. Special vaccination training is required at the hatchery, which then needs a follow-up on the farm. In the field, this follow-up and the alignment of all the protocols has proven challenging for many producers.

Managing coccidiosis in poultry: Next steps

The limitations chemotherapy and vaccines have led to a surge in the quest for effective  natural solutions. Recent research into plant-derived phytochemicals shows that these compounds have properties that make them an interesting tool against coccidiosis (cf. Cobaxin-Cárdenas, 2018). Knowledge, research, and technological developments are now ready to offer solutions that can be an effective part of coccidia control programs. These natural solutions create opportunities to make poultry production more sustainable by reducing dependency on harmful drugs.

References

Bafundo, K.W., L. Gomez, B. Lumpkins, G.F. Mathis, J.L. McNaughton, and I. Duerr. “Concurrent Use of Saponins and Live Coccidiosis Vaccines: The Influence of a Quillaja and Yucca Combination on Anticoccidial Effects and Performance Results of Coccidia-Vaccinated Broilers.” Poultry Science 100, no. 3 (2021): 100905. https://doi.org/10.1016/j.psj.2020.12.010.

Blake, Damer P., Jolene Knox, Ben Dehaeck, Ben Huntington, Thilak Rathinam, Venu Ravipati, Simeon Ayoade, et al. “Re-Calculating the Cost of Coccidiosis in Chickens.” Veterinary Research 51, no. 1 (September 14, 2020). https://doi.org/10.1186/s13567-020-00837-2.

Cobaxin-Cárdenas, Mayra E. “Natural Compounds as an Alternative to Control Farm Diseases: Avian Coccidiosis.” Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment, March 21, 2018. https://doi.org/10.5772/intechopen.72638.

Conway, Donal P., and M. Elizabeth McKenzie. Poultry Coccidiosis: Diagnostic and Testing Procedures. Ames, IA, IA: Blackwell Publishing, 2007.

McDougall, L. R., and W. M. Reid. “Coccidiosis.” Chapter. In Diseases of Poultry, edited by B. W. Calnek, H. W. Yoder, W. M. Reid, C. W. Beard, and H. J. Barnes. Ames, IA: Iowa State University Press, 1991.

Olabode, Victoria Bose, Dashe Yakubu Gunya, Umaru Mada Alsea, Tobias Peter Pwajok Choji, and Israel Joshua Barde. 2020. “Histopathological Lesions of Coccidiosis Natural Infestation in Chickens”. Asian Journal of Research in Animal and Veterinary Sciences 5 (2), 41-45. https://www.journalajravs.com/index.php/AJRAVS/article/view/30090.

Shivaramaiah, Chaitanya, John R. Barta, Xochitl Hernandez-Velasco, Guillermo Téllez, and Billy M. Hargis. “Coccidiosis: Recent Advancements in the Immunobiology of Eimeria Species, Preventive Measures, and the Importance of Vaccination as a Control Tool against These Apicomplexan Parasites.” Veterinary Medicine: Research and Reports 2014, no. 5 (April 28, 2014): 23–34. https://doi.org/10.2147/vmrr.s57839.

Sumano López, Héctor, and Gutiérrez Olvera Lilia. Farmacología Clínica En Aves Comerciales. México: UNAM, Departamento de Fisiología y Farmacología, 2005.




ABF poultry production: How to keep coccidiosis in check

art74 header

By T.J. Gaydos

Coccidiosis control consists of programs, including ionophores, chemical coccidiostats, vaccines, and gut health-promoting natural products. Sometimes, these are combined (Noack, Chapman, and Selzer, 2019). Antibiotic-free (ABF) production requires new approaches – this article will look at how different solutions can be successfully implemented.

Meticulous coccidiosis management in ABF productions is crucial to safeguard animal welfare and performance.

What makes up a successful coccidiosis control program for ABF systems?

When managing a poultry program without antibiotics in the U.S., where ionophores are classified as antibiotics, the only available tools for coccidiosis control are vaccines, chemical coccidiostats, and natural products supporting gut health during challenging times.

  • The use of a chemical-only program is possible and often successful. Still, the choice of chemicals is limited, and the risk of building resistance must always be considered and managed through the appropriate rotation of active ingredients.
  • A second option is a coccidiosis vaccine with or without chemical coccidiostats. This is an excellent long-term option but the most difficult to manage.
  • A third effective option is a coccidiosis vaccine combined with the use of phytomolecule-based solutions contributing to the coccidiosis control program and delivering improved gut health.

What do most ABF newcomers do?

When making the transition from conventional to ABF production, broiler producers usually try:

  1. A chemical coccidiostat program,
  2. A bio-shuttle program: a coccidiosis vaccine, followed by a chemical coccidiostat, or
  3. Phytomolecule-based feed additives; typically, in combination with a coccidiosis vaccine or chemical program.

When the operation can master managing the coccidiosis vaccine and other husbandry challenges, the optimal solution is the combination of vaccination and phytomolecule-based feed supplements.

Why a combination?

A coccidiosis control program based on vaccination begins in the hatchery and continues through live production. Its success relies on many moving parts working in sync to produce the desired result of early uniform immunity to coccidiosis. Phytomolecule-based products additionally can support the animals in terms of gut health, oxidative balance, and immunity.

Vaccination success depends on attention to detail

If one decides to use vaccination for coccidiosis control, the following points must be considered to achieve high effectiveness.

Vaccine storage – the right temperature is crucial

Proper storage is essential for all vaccines. In general, coccidiosis vaccines should be stored between 2° to 7°C (35° to 45°F), but optimally, one asks the vaccine manufacturer for product-specific directions. Coccidiosis vaccines must not freeze. Freezing will severely damage or kill the oocysts, thus significantly reducing efficacy. It is also important to ensure that there are no cold spots in the refrigerator. Hence, vaccines should be stored in the middle of a shelf with air space around or in a foam-insulated place inside the fridge.

For monitoring the temperature, an analog high/low thermometer should be placed by the vaccine. The temperature should be recorded, and the thermometer reset daily. To minimize the risk of administering a frozen vaccine, it is recommended to put freeze indicators outside the boxes. If, despite all these measures, vaccines are suspected to have frozen, segregate the suspect product and contact the supplier for assistance.

Vaccine administration – mind an even distribution for all steps

The goal of vaccination is to build early and uniform immunity in all chickens, which is achieved by exposure to repeated cycles of coccidia replication in the intestine.

1.      Even distribution of the oocysts in the vaccine

It is essential to ensure that all oocysts flow from the bottle into the distribution jug when mixing the vaccine. The oocysts should be well-mixed and then must be constantly agitated to remain suspended in solution. The most common way to suspend oocysts is to use a small air pump to bubble the vaccine, creating turbulence.

2.      Even spraying of the vaccine onto the chicks

The next important step is to ensure that the chicks are evenly covered with the vaccine. When in doubt, run a chick box through the spray cabinet, collect the nozzles’ output, and measure the volume sprayed. To check the spray pattern, set a piece of clear hard plastic on top of the pegs in the chick basket and run the box through the spray cabinet. Evaluate the spray pattern on the plastic sheet and adjust as needed to ensure an even spraying. The spray pattern should be checked every time a new batch of vaccines is mixed.

Even spraying of coccidiosis vaccine can be easily tested using a clear plastic sheet.

3.      A similar amount of vaccine intake for all chicks

Coccidiosis vaccines must be preened and consumed to be effective. Adding a dye to the spray compatible with the vaccine will help stimulate the birds to preen. A well-lit and temperature-controlled processing and holding area will promote preening behavior. Tongues should be checked regularly to ensure that chicks consume the vaccine. At a minimum, check ten birds per basket and ten baskets per lot. More than 98% of birds should have evidence of vaccine consumption within 10-15 minutes post-vaccination.

Chick vitality is a critical success factor in an ABF program. Healthy chicks perform better in the field. In the context of a coccidiosis vaccine, they are more apt to preen, more likely to consume food and water quickly, and less likely to excessively pick at the litter.

A dye helps to evaluate if the coccidiosis vaccine was evenly sprayed across all chicks.

Uniform immunity through effective farm management

A successful coccidiosis vaccination program achieves uniform immunity against coccidia, which slowly develops from the hatchery. For this purpose, birds must be evenly spread throughout all stages of growth to seed the litter evenly with oocysts and to have even coccidiosis pressure in all parts of the house.

Time management allows even immunization

Birds should be turned out from half to full house between 9 and 11 days. This schedule allows the birds to excrete the first round of oocysts and for the oocysts to sporulate and be consumed by the birds.

The birds need to be moved to full house before they secrete the second round of oocysts. This will allow the oocysts to be spread uniformly in the house. Coccidia reproduce exponentially and the second round of oocyst production is significantly more numerous than the first.

It is possible to brood birds in the full house while on coccidiosis vaccine. Still, it is complicated to manage the coccidiosis cycling because bird density is generally too low to ensure that birds effectively cycle the vaccine strain oocysts.

Litter consistency is decisive

Litter management is essential to control the cycling of coccidiosis because one stage of the life cycle of coccidia occurs in the litter. Litter moisture of 25% is ideal. When litter is squeezed in a fist, it should briefly form and immediately break apart. If it stays formed, it is too wet. If the litter is free-flowing and dusty, it is too dry for adequate sporulation.

Non-antibiotic supplements support coccidiosis management

Managing coccidiosis cycling requires attention to detail and is probably the most challenging part of adequately managing an ABF program. All farms are not equal and need to be supervised according to their specific needs. The use of non-antibiotic feed and water additives can help control coccidiosis and other enteric diseases.

Some non-antibiotic supplements have anticoccidial (e.g. amprolium, saponins, tannins) or antibacterial (e.g., plant extracts) activity. When used correctly, these may improve the performance of birds in a vaccination or chemical-based coccidiosis control program. Other non-antibiotic alternatives such as probiotics, prebiotics, organic acids, and yeast cell wall extracts have been shown to improve gastrointestinal health. The combination of excellent animal husbandry and the correct feed/water additive program is the key to success.

References

Noack, Sandra, H. David Chapman, and Paul M. Selzer. “Anticoccidial Drugs of the Livestock Industry.” Parasitology Research 118, no. 7 (2019): 2009–26. https://doi.org/10.1007/s00436-019-06343-5.




How to achieve sustainable antibiotic-free broiler production

art64 new header photo scaled

by Predrag Persak, Regional Technical Manager North Europe, EW Nutrition

The main sustainability challenge for broiler production lies in securing enough high-quality, nutritious, safe, and readily available food at a reasonable cost. At times, feed ingredients have to be included that are not nutritionally ideal and might compromise one’s broilers’ health and wellbeing. However, counteracting this threat with prophylactic antibiotics is not acceptable: We must minimize the use of antibiotics to mitigate antimicrobial resistance. The way forward is to go beyond static and linear nutritional value-to-price thinking. A dynamic nutritional strategy focusing on the interdependencies between ingredients, gut, microbiome, and digestion, enables sustainable ABF broiler production.

Sustainable ABF broiler production requires a dynamic, gut health-oriented nutritional strategy

Sustainability vs. ABF production – is there a trade-off?

The United Nations’ 1987 Brundtland report offers a clear definition of sustainability as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” “Ability” includes the availability of resources – and in broiler production, which is one of the most efficient livestock productions, resources have always been a top priority. As a constantly evolving industry, broiler production has been quick to adopt sustainability into its management strategies. The use of the resource that is antibiotics, however, poses particular challenges.

Humans and animals depend on antibiotics to fight microbial infections. It is essential to maintain their efficacy so that future generations can lead healthy lives. Antibiotic efficacy is under threat from the development of antimicrobial resistance, which emerges from overuse and misuse in both human and veterinary medicine. Across the globe, broilers are still raised with the assistance of antibiotics. Either for disease therapy, to prevent disease occurrence, and still, in some parts of the world, to enhance performance. Driven by regulatory and consumer demands, broiler production with minimal or no use of antibiotics is rapidly gaining importance.

The challenges of antibiotic-free broiler production

ABF systems encounter numerous challenges since production requirements change drastically. Stock density must be lower; it takes longer to reach the desired weight; and more feed is needed to produce the same amount, with a higher risk of morbidity and mortality (Cervantes, 2015). The latter can result in more birds needing treatment with medically important antimicrobial drugs. All those challenges need to be overcome by adopting suitable strategies related to nutrition, genetics, management, biosecurity, welfare, and food safety.

As animal nutritionists, our focus lies on nutrition, feed, feed materials, additives, feed processing, feeding, and their (positive or negative) influence on the sustainability of ABF broiler production. However, we cannot look at these dimensions of production as a separate process. They are linked in the whole food chain and are affected by changes that happen in other related parts. An obvious example is feed production, which has an enormous impact on the overall sustainability of ABF broiler production:

  • Due to raw material shortages, diets are becoming ever more complex, containing more single feed ingredients. For some of them, we need a better understanding of their impact on ABF broiler production (e.g., sunflower, rapeseed, beans, lupins).
  • The nutritional composition of raw materials changes due to limitations in fertilizer use, and variability within the same raw material group is expected to increase.
  • New food waste-reducing feed materials can enhance feed security but also require nutritional profiling to integrate them into diets.
  • Local feed material production in humid and warm environments can introduce various pathogens into the feed/food chain.
  • Increases in known and the emergence of new antinutrients and feed components that impair animal health, performance, and feed efficiency.
  • Sustainability-driven pesticide reduction raises concerns about mycotoxins contaminating feed ingredients.
  • Nutrient reduction to support gut health and, primarily, lower the excretion of nitrogen and phosphorous, negatively affects growth, nutritional standards, and the ability to freely select feed materials to include in broiler diets.
  • The value (of which price is also part) of raw materials will be compromised, due to availability and nutritional variability.

Mycotoxin contaminated-feed can damage production animals' performance, health, and welfareMycotoxin contaminated-feed can damage production animals’ performance, health, and welfare

When striving for a sustainable ABF broiler production approach, the possibility for errors becomes higher, while the error margin becomes smaller. The solution lies in helping the animals to mitigate the impact of stressors by focusing on the interaction of ingredients, gut, microbiome, and digestion. It is a holistic approach centered on gut health. Keeping the intestines BEAUTIful will help you produce in challenging conditions without the use of antimicrobials.

Keep the broiler gut BEAUTIful and resilient to stress

The BEAUTIful formula captures the six areas producers need to target for supporting broiler gut health:BEAUTI stands for barrier, enzymatic digestion, absorption, united microbiome, transport, and immunity

Barrier

If it’s working correctly, the effective gatekeeper knows what gets in and what stays out. When the barrier function is compromised due to stress, pathogens can cause infections, disrupt health, and negatively impact broiler immunity. Necrotic enteritis, femoral head necrosis, and bacterial chondronecrosis with osteomyelitis (BCO) are common diseases that affect today’s broiler production (Wideman, 2015). As the source of nutrients, feed serves as a modulator of various physiological functions in the intestinal tract, including intestinal barrier function.

Enzymatic digestion

The gut is where endogenous and exogenous enzymes perform their hydrolysis functions to break down complex nutrients into the parts that can be used either by the intestinal tissue itself or for the whole animal. One part of hybrid enzymatic digestion is the fermentation by commensal microbes, in which complex materials form end-products of high biological values (such as short-chain fatty acids, SCFA).

Absorption

Maintaining the gut’s resorptive capacity is essential to secure the total intake of digested nutrients. Otherwise, pathogenic bacteria might use the excess nutrients to grow, form toxins, and affect the birds’ health and productivity.

United microbiome

The intestine of a broiler chicken is colonized by more than 800 species of bacteria and other inhabitants, such as viruses and simple organisms that are still unknown. By competitive exclusion and secretion of bacteriocins (volatile fatty acids, organic acids, and natural antimicrobial compounds), commensal bacteria keep the host safe from an overgrowth of dangerous bacteria (e.g., Salmonella, Campylobacter, and Clostridium perfringens). The fine-tuned diversity in the intestinal flora and balance in all interactions between it, the host, and the ingesta are needed for birds to stay healthy and perform well.

Transport

Birds’ digestive tract volumes are smaller than those of mammals with similar body weight. This means that they achieve more efficient nutrient digestion in a shorter retention time, averaging between 5 and 6 hours. Passing the small intestine usually takes around 3 hours, of which 1 hour is spent in the duodenum and jejunum. Transport times are affected by the feeding system and the extent to which material enters the caeca. Reflux of material from the distal to the proximal small intestine is an important feature that helps digestion and maintenance of a healthy gut.

Immunity

The intestinal microbiota is critically important for the development and stimulation of the immune system. The intestine is the key immunological organ, comprised of myeloid and lymphoid cells, and a site for producing many immune cell types needed to initiate and mediate immunity. Together with the microbiome, dendritic cells induce antigen-specific responses and form immunoglobulin A, which works in the intestinal lumen.

Natural gut health solution for sustainable ABF broiler production

In practice, supporting broiler gut health requires a holistic approach that includes natural feed additive solutions. Phytomolecules are compounds that certain plants develop as defenses mechanisms. Phytomolecules-based solutions should feature prominently in sustainable ABF broiler production approaches due to their advantageous properties:

Enhance digestion, manage variability

Sustainability necessitates efficient resource utilization. Digestion support needs to be a priority to use the available feed in its entirety. This is particularly important if antibiotics use needs to be minimized: a maximum of nutrients should be utilized by the animal; otherwise, they feed potentially harmful bacteria, necessitating antibiotic treatments. Enhancing digestibility is the focus when we are dealing with variable feed materials or feed changes that represent stress to the animal. Selected phytomolecules have proven efficient at improving performance due to enhanced digestion (Zhai et al. 2018).

Work on microbiome and pathogens

The antimicrobial activity of certain phytomolecules can prevent the overgrowth of pathogens in the gastrointestinal tract, thereby reducing dysbacteriosis (Liu et al., 2018) and specific diseases such as necrotic enteritis. Studies on broilers show that they also reduce the adhesion of pathogens to the wall of the intestine. Certain phytomolecules even possess antimicrobial characteristics against antibiotic-resistant pathogens.

Keep gut integrity

Phytomolecules help maintain tight junction integrity, thus preventing leaky gut (Li et al., 2009). As a result, the potential flow of bacteria and their toxins from the gut lumen into the bloodstream is mitigated. Their properties thus make phytomolecules a promising alternative to the non-therapeutic use of antibiotics. 

Trial results: Phytomolecules enhance broiler gut health

To test the efficacy of phytomolecules, we conducted a large-scale field study in Brazil, under practical conditions. The focus was on growth performance, and no growth-promoting antibiotics were used. Lasting 5 months, the trial involved more than 2 million broilers. The birds were divided into a control and a trial group, with two repetitions per group. Both groups were fed the standard feed of the farm. The trial group additionally received 100g of Activo per MT in its finisher feed for 3 weeks. The study clearly shows that Activo supplementation improves performance parameters (daily weight gain, average total gain, and improved feed efficiency), which resulted in a higher production efficiency factor (PEF):

  • Activo groups had a 3 % higher average daily weight gain and reached their slaughtering age earlier
  • The final weight of Activo groups was about 2.5 % higher than in the control group
  • With a 2 points better feed conversion, the animals of the Activo group achieved a 13.67 points higher PEF

Figure 1: Broiler performance results, Activo vs. non-supplemented control group Figure 1: Broiler performance results, Activo vs. non-supplemented control group 

Conclusion

Antibiotic-free broiler production is a challenging endeavor: producers need to maintain animal welfare and keep up efficiency while making farming profitable. Over time, these challenges will affect producers even more as sustainability requirements increase across all parts of the broiler production chain. On top of that, coccidiostats, which are essential for efficient broiler production, are increasingly being questioned, which will require concerted research into feed additive solutions.

To make sustainable ABF broiler production the norm, it is unavoidable to adopt suitable strategies related to nutrition, genetics, management, biosecurity, welfare, and food safety. Effective, scientifically and practically proven tools already exist: Thanks to their positive impact on intestinal health, phytomolecules reliably support sustainable broiler production without antibiotics.


References

Cervantes, Hector M. “Antibiotic-Free Poultry Production: Is It Sustainable?” Journal of Applied Poultry Research 24, no. 1 (2015): 91–97. https://doi.org/10.3382/japr/pfv006.

Li, Y., H.Y. Cai, G.H. Liu, X.L. Dong, W.H. Chang, S. Zhang, A.J. Zheng, and G.L. Chen. “Effects of Stress Simulated by Dexamethasone on Jejunal Glucose Transport in Broilers.” Poultry Science 88, no. 2 (2009): 330–37. https://doi.org/10.3382/ps.2008-00257.

Liu, ShuDong, MinHo Song, Won Yun, JiHwan Lee, ChangHee Lee, WooGi Kwak, NamSoo Han, HyeunBum Kim, and JinHo Cho. “Effects of Oral Administration of Different Dosages of Carvacrol Essential Oils on Intestinal Barrier Function in Broilers.” Journal of Animal Physiology and Animal Nutrition 102, no. 5 (2018): 1257–65. https://doi.org/10.1111/jpn.12944.

Wideman, Robert F. “Bacterial Chondronecrosis with Osteomyelitis and Lameness in Broilers: a Review.” Poultry Science 95, no. 2 (2016): 325–44. https://doi.org/10.3382/ps/pev320.

Zhai, Hengxiao, Hong Liu, Shikui Wang, Jinlong Wu, and Anna-Maria Kluenter. “Potential of Essential Oils for Poultry and Pigs.” Animal Nutrition 4, no. 2 (2018): 179–86. https://doi.org/10.1016/j.aninu.2018.01.005.




Want better poultry performance? Focus on gut health

by Ruturaj Patil, Product Manager Phytogenic Liquids, EW Nutrition

Commercial poultry operations have undergone enormous changes in production practices over the last 50 years. Genetic selection for high production rates, along with upgraded management techniques and dietary measures, have led to increased performance standards in all poultry operations (Kogut et al., 2017). However, it is sensible to now look into whether poultry performance may soon reach a ceiling due to genetic and/or physiological limits. So, aiming at further performance optimization, poultry researchers and producers are now focusing on gut health.

LOWRES IMG
LOWRES IMG

Gut health management is key to sustainably improve poultry performance

The caveat, of course, is that, due to concerns about antimicrobial resistance, antimicrobial growth promoters (AGPs) no longer offer the easy answer to gut health issues they once were. To preserve antibiotics’ efficacy for cases where they are indispensable, gut health-oriented performance enhancement needs to come from other sources. This article reviews the principles of gut health management in poultry and shows how Activo liquid, a phytomolecules-based in-water solution, strengthens poultry performance by targeting gut health.

Gut health: the cradle of poultry performance

Gastrointestinal health in poultry birds encompasses three dimensions: microflora balance, gut structural integrity, and immune system status. The gut plays a vital and diverse role as it hosts most microorganisms in the body, contains more than twenty different hormones, digests and absorbs the nutrients, and accounts for 20% of body energy expenditure (Choct, 2021). When gut health is compromised, digestion and nutrient absorption are affected, with likely detrimental effects on feed conversion, followed by economic loss and greater disease susceptibility.  Disease resistance and nutrient utilization largely depend on maintaining a beneficial gut antioxidant status, improving gut integrity, and modulating the gut microbiota (Oviedo-Rondón, 2019).

In birds, the gut is separated into five distinct regions (Figure 1): crop, proventriculus, gizzard, small intestine (duodenum, jejunum, and ileum), and large intestine (ceca, cloaca, and vent). Each of these regions has a specific role in the secretion of digestive juices and enzymes, the grinding of feed particles and then the digestion and absorption of nutrients (Bailey 2019).

Schematic overview of poultry gastrointestinal tractFigure 1: Schematic overview of poultry gastrointestinal tract

Factors affecting gut health

Gut health is influenced by the balance between the physiological health status of host, the gut microbiota, and a range of specific factors, all of which producers need to consider. From a management perspective, key factors encompass deprived gut health, biosecurity, and production stress, which is elevated during certain critical stages (see table 1). Environmental factors include humidity, temperature, and ventilation. Dietary factors, such as feed and water quality, feed composition, and mycotoxin contamination, also impact the development and ongoing state of poultry birds’ intestinal microbiota.

Critical stages for gut health issues in poultry birdsTable 1: Critical stages for gut health issues in poultry birds

The future is here: antibiotic reduction through improved gut health

There is a strong trend towards antibiotic-free (ABF) poultry production, fueled by AGP bans in certain regions (such as the European Union) and increasing consumer interest in avoiding products containing traces of AGPs. ABF systems can be profitable as long as the prices for the final ABF products can cover the investment costs necessary to produce these products. Larger-scale, sustainable ABF production will depend on developing a more profound understanding of intestinal health alongside the development of practical applications that foster gut health throughout each step of the production system.

Feed additive solutions to support birds during challenging situations

Feed additive manufacturers are looking into accessible alternatives to mitigate the need for antibiotics in ABF systems, requiring enormous research and development efforts. At EW Nutrition, our approach is to offer a holistic antibiotic reduction program for gut health management in poultry. The program comprises feed- and water-based solutions to support gut health during high-challenge periods. Activo liquid, an in-water solution containing standardized amounts of selected phytomolecules, is a key component of our program. Based on its three-fold mode of action, Activo liquid provides gut health support that improves livability and feed efficiency:

  • Antimicrobial activity hinders the growth of potential pathogens
  • Better gut integrity and positive microbiota optimize feed efficiency and gut health
  • Antioxidant activity at the gut level prevent free radical formation and oxidative stress

As a water-based solution, Activo liquid provides a quick and flexible option for gut health control on poultry farms. The benefits of Activo liquid supplementation have been demonstrated through several scientific and field studies globally.

Activo liquid reduces mortality and improves feed conversion in broilers

Numerous field studies for antibiotic-free broilers across different countries and breeds show: on average, the inclusion of Activo liquid reduces mortality by 0.6% and improves FCR by 5%, compared to non-supplemented control groups (Figure 2).

Changes in livability and feed conversion rate in Activo liquid-supplemented broilersFigure 2: Changes in livability and feed conversion rate in Activo liquid-supplemented broilers

Activo Liquid supports broiler breeders from start of lay to pre-peak production

Broiler breeders are prone to gut-related issues from the start of lay to pre-peak production (age 24 to 32 weeks). This period is characterized by sudden changes in feed consumption and high production stress. Field studies from Thailand show that Activo liquid supplementation in this phase leads to improved livability and higher laying rates.

A of 34,000 female broiler breeders during the first 9 weeks of production found that for the group receiving Activo Liquid  (200 ml / 1000 L, 5 days per week, 6 hours per day):

  • The average laying rate/HH increased by 7.2 % during the trial period,
  • Nearly 3  more  hatching  eggs  per  hen  housed  and  about  5  more  hatching  eggs  than  the  genetic standard were produced, and
  • Mortality decreased by 0.2 % points compared to the control.

Another study, again evaluating the first 9 weeks of production using 20,000 birds, also found that broiler breeders supplemented with  Activo  Liquid show reduced mortality, a higher laying rate, and more hatching eggs per hen housed (Figure 3).

Performance results from Cobb broiler breeders, Activo liquid supplementation vs. controlFigure 3: Performance results from Cobb broiler breeders, Activo liquid supplementation vs. control

Activo program improves layer productivity

Commercial layers often becomes challenged due to stress originating from management issues, gut pathogens, and an improper assimilation of nutrients. The negative impact on gut health can result in poor uniformity, low livability, and impaired body weight gain. The Activo program (a combination of Activo powder and liquid) has been found to improve layer performance, likely because its phytogenic components foster better intestinal integrity and microbiome diversity.

A study of 8 replicates with 36 Hy-line brown laying hens was conducted in China, for instance, testing the inclusion of both Activo (100 g / MT of feed) and Activo Liquid (250 ml / 1000 L for 4 days, every 2 weeks, from week 15 to week 25). It found that the Activo program  can effectively support the animals in coping with NSP-rich diets (Figure 4). Supplemented layers showed 3.36% higher egg production, representing more than 3.5 eggs and more than 150 grams of additional egg mass per hen housed during the period.  Better  gut  health  in  the  Activo  Program  gut  was evidenced  by  a  better  hen  body  weight ,  as  well  as  higher  yolk  color, lower  FCR, and improved  intestinal morphology parameters.

Performance results from Hy-line layers, Activo program vs. control, body weight and FCR

Performance results from Hy-line layers, Activo program vs. control, eggsFigure 4: Performance results from Hy-line layers, Activo program vs. control

Conclusion: future improvements in poultry performance will come from the gut

As the trend towards ABF poultry production gains momentum, a concerted focus on supporting birds’ gut health is key to achieving optimal performance. Multiple field studies of Activo liquid application demonstrate that, due to their antimicrobial and antioxidant properties, the phytomolecules present in Activo liquid effectively support birds’ intestinal health during challenging periods.

In combination with good dietary, hygiene and management practices, phytomolecules offer a potent tool for reducing the use of antibiotics. The inclusion of Activo liquid in their birds’ diets allows poultry producers to achieve better gut health and, thus, stronger performance results in a sustainable way.

 


References

Bailey, Richard A. “Gut Health in Poultry: the World within – Update.” The Poultry Site, July 6, 2021. https://www.thepoultrysite.com/articles/gut-health-in-poultry-the-world-within-1.

Choct, Mingan. “The Importance of Managing Gut Health in Poultry.” Poultry Hub Australia, November 26, 2014. https://www.poultryhub.org/importance-managing-gut-health-poultry.

Kogut, Michael H., Xiaonan Yin, Jianmin Yuan, and Leon Bloom. “Gut Health in Poultry.” CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 12, no. 031 (October 1, 2017): 1–7. https://doi.org/10.1079/pavsnnr201712031.

Oviedo-Rondón, Edgar O. “Holistic View of Intestinal Health in Poultry.” Animal Feed Science and Technology 250 (2019): 1–8. https://doi.org/10.1016/j.anifeedsci.2019.01.009.




8 Effective Solutions to Optimize Poultry Gut Health

poultry gu health

by Dr. Ajay Bhoyar, Global Technical Manager – Poultry, EW Nutrition

 

Necessity, goes the saying, is the mother of invention. No wonder, then, that necessity is driving innovation in the poultry industry.  A few distinct such drivers of change stand out:

Genetic improvements: Significant genetic improvements have consistently increased the production performance of breeders, as well as commercial broilers and layers. The genetically improved breeds demand improved nutrition and management practices.

Feed ingredient prices/availability: Corn and soybean meal are the main feed ingredients in poultry feed. Consequently any fluctuations in their prices have a high impact on the cost of production of eggs and meat. During the short span of the last 5 years, US corn and soybean meal prices have increased by around 54% and 68%, respectively. The optimum utilization of available feed ingredients and improvements in nutrient availability continue to be the key areas of interest for the poultry industry.

Consumer preference and regulatory changes: In certain geographies, these changes have resulted into 3 major trends in the poultry industry: antibiotics reduction (ABR), cage-free rearing, and food safety. The trend in the production and consumption of antibiotic-free meat products is growing faster than ever across the globe.

Antibiotics reduction (ABR): a key global trend

Apart from veterinary use, antibiotics are used as feed additives —antibiotic growth promoters (AGP) in animal production. Alarming levels of resistance to antibiotics have been reported in countries of all income levels, with the result that common diseases are becoming untreatable, and life-saving medical procedures riskier to perform.  Misuse and overuse of antimicrobials are the main drivers in the development of drug-resistant pathogens. (WHO/ https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance )

Antibiotic-free chicken production has gained a lot of momentum in the recent past. Over the past years, consumer preferences in the US resulted in a significant increase in the production of antibiotics-free (ABF) broiler chicken meat. In effect, the number of birds produced in “no antibiotics ever” (NAE) programs in the U.S. today is now at more than 50 percent (Poultry Health Today, 2019).

The reduction of antibiotic use poses some challenges to poultry producers. Apart from increased capital investment for modifications in feed mills and farms, increase in feed additive cost, the main challenge due to the removal of AGPs from feed can be the reduced production performance of poultry, mainly due to increased gut health issues.

Good gut health is a must for profitable production

“The intestinal health of poultry has broad implications for the systemic health of birds, animal welfare, the production efficiency of flocks, food safety, and environmental impact,” state Oviedo-Rondón (2019). The main challenges for ABF chicken or turkey production fall under the same heading of gut health, in particular the prevention and control of coccidiosis and necrotic enteritis (Cervantes, 2015).

What are the most effective ways to mitigate gut health challenges?

Depending on specific production needs and challenges, various technologies are used by the poultry producers to address gut health issues. Some of the most commonly used innovative technologies include:

Dietary Fibers (DF)

Scientists have found that DF have an enormous impact on the gastrointestinal tract (GIT) development, digestive physiology, including nutrient digestion, fermentation, and absorption processes of poultry (Jha & Mishra, 2021).

The water-insoluble fibers are seen as functional nutrients, as they can escape digestion and modulate nutrient digestion: “A moderate level of insoluble fiber in poultry diets may increase chyme retention time in the upper part of the GIT, stimulating gizzard development and endogenous enzyme production, improving the digestibility of starch, lipids, and other dietary components” (Mateos et.al. 2012). The insoluble DF, when used in amounts between 3–5% in the diet, could have significant effects on intestinal development and nutrient digestibility.

Dietary fibers influence the development of the gizzard in poultry birds.  A well-developed gizzard is a must for good gut health. Jiménez-Moreno & Mateos (2012) noted that the coarse fiber particles are selectively retained in the gizzard, that ensures a complete grinding and a well-regulated feed flow and secretion of digestive juices, and regulates GIT motility & feed intake. The inclusion of insoluble fibers in adequate amounts improves the gizzard function and stimulates HCl production in the proventriculus. Thus it can help in the control of gut pathogens.

Probiotics and prebiotics

Probiotics and prebiotics have drawn considerable attention as alternatives to antibiotics in animal feeds. Supplementing diets with probiotics and prebiotics is a significant factor contributing to modified intestinal microflora, which, in turn, may effectively influence the birds’ growth performance and health (Yang et al. 2009).

Probiotics introduce desirable microorganisms into the intestinal tract through the diet (feed or water). They consist of live bacteria, fungi, or yeasts that positively contribute to the gastrointestinal flora. As such, they are important for a well-formed and well-maintained digestive system, and are indirectly essential to growth performance and to the overall health of animals in general. Probiotic supplementation could have the following effects, as stated by Jha et al:

  • modification of the intestinal microbiota
  • stimulation of the immune system
  • reduction in inflammatory reactions
  • prevention of pathogen colonization
  • enhancement of growth performance
  • alteration of the ileal digestibility and total tract apparent digestibility coefficient
  • decrease in ammonia and urea excretion (Jha et.al., 2020)

Probiotics can be used not just in feed and drinking water, but also in spray solutions applied to day-old chicks either in the hatchery or immediately after placement in the brooding house. This way, the beneficial microorganisms can enter the intestine earlier than through other methods (known as early seeding).

Prebiotics are also a means of increasing the beneficial bacteria in the poultry gut microbiota. Prebiotics like mannan-oligosaccharides (MOS), inulin and its hydrolysate (fructooligosaccharides: FOS), as well as other prebiotics are important contributors to the modulation of the intestinal microflora and stimulating a potential immune response, as well as stimulating the development of beneficial microorganisms. Prebiotics can also help reduce pathogen colonization in the GIT.

Feed enzymes

The role of feed enzymes in promoting the efficiency of nutrient utilization is well recognized. Recent estimates (Adeola & Cowieson, 2011) indicate that feed enzymes saved the global feed market an estimated US $3–5 billion per year. Feed Enzymes can also have a positive impact on gut health.

Among the beneficial effects of feed enzymes are:

  • Inactivating anti-nutrients in the feed ingredients
  • Unlocking nutrients otherwise unavailable to birds (e.g. Phosphorus from phytic acid)
  • Reducing harmful microbial proliferation, depriving detrimental microorganisms of nutrients
  • Reducing the undigestible components of feed, the viscosity of digesta, or the irritation to the gut mucosa that causes inflammation.

Enzymes also generate metabolites that promote microbial diversity, which helps to maintain gut ecosystems that are more stable and more likely to inhibit pathogen proliferation (Bedford, 1995; Kiarie et al., 2013). Feed enzymes are heat-sensitive and tend to lose their activity potential during pelleted feed manufacturing. There has been a significant interest in the application of intrinsically heat stable enzymes for more efficient action. Apart from coated feed enzymes, the post pellet liquid application (PPLA) of feed enzymes has increased in the recent past.

Toxin binders & antioxidants

Intestinal health problems can often be preempted, especially in poultry companies with ABF production programs, by mitigating the danger of mycotoxins in feedstuffs and rancid fats (Murugesan et al., 2015; Grenier and Applegate, 2013). Mycotoxins can compromise several key functions of GIT. This often results in decreased nutrient absorption (by decreasing the available surface area), modulation of nutrient transporters, and loss of barrier function (Grenier and Applegate, 2013). Some mycotoxins “encourage” the persistence of intestinal pathogens and thus enhance the possibility of intestinal inflammation.

Rancid fats and oils have been linked to the pathogenesis of enteric diseases (Hoerr, 1998; Butcher and Miles, 2000; Collet, 2005). The oxidation of oils and fats negatively impacts the energy content of these ingredients. The addition of feed antioxidants during the rendering process/ blending of fats and oils, and proper storage and transport before final use in feed can control rancidity in oils and fats. Proper fat storage conditions in tanks and transportation lines should be constantly monitored to prevent the development of rancidity in the feed mill. Antioxidants and mycotoxin binders can reduce the effects of mycotoxins and peroxide, especially, but not only, in ABF programs (Yegani and Korver, 2008).

Organic acids

Organic acids are compounds with acidic properties that occur naturally and include carbon. As the digestive process includes microbial fermentation, beneficial bacteria which naturally reside in the crop, intestines, and ceca produce such organic acids (Huyghebaert et.al. 2010). The inclusion of organic acids in poultry diets can improve gut health, increase endogenous digestive enzyme secretion and activity, and improve nutrient digestibility. Thus they generally contribute to the overall gut health of the animal.

The inclusion of organic acids in feed can help not only decontaminate feed but also have the potential to reduce enteric pathogens in poultry. The acids can cross the bacterial cell wall and disrupt the normal actions of certain types of bacteria, including Salmonella spp, E. coli, Clostridia spp, Listeria spp. and some coliforms.

Organic acids are also used in drinking water to help lower the microbial count. This can be achieved by lowering the pH of water and by the prevention/removal of biofilms in the water lines.

However, organic acids should be included in the feed or water with caution. The limitations for use of organic acids in animal production can be:

  • Bacterial resistance to organic acids over long-term use
  • Adverse effect on feed palatability, leading to feed refusal
  • Organic acids are corrosive in nature and can damage poultry equipment
  • Buffering capacity of dietary ingredients can impact efficacy

Essential oils/Phytomolecules

Essential oils (EOs) are raw extracts from plants (herbs, flowers, leaves, roots, fruit etc.). The beneficial effects of EOs include appetite stimulation, improvement of enzyme secretion related to food digestion, and immune response activation (Krishan and Narang, 2014)

EOs are an unpurified mix of different phytomolecules. The raw extract from oregano is a mix of various phytomolecules (terpenoids) like carvacrol, thymol, and p-cymene. Carvacrol, for instance, is a monoterpinoid found in various plants such as oregano or thyme. A phytomolecule is one active compound.

These botanicals have received increased attention as possible growth performance enhancers for animals in the last decade because of their beneficial influence on lipid metabolism, as well as their antimicrobial and antioxidant properties (Botsoglou et al., 2002), their ability to stimulate digestion (Hernandez et al., 2004), their immune-enhancing activity, and anti-inflammatory potential (Acamovic and Brooker, 2005). Many studies have reported on the supplementation of poultry diets with essential oils that enhanced weight gain, improved carcass quality, and reduced mortality rates (Williams and Losa, 2001). The use of specific EO blends can be effective in reducing the colonization and proliferation of Clostridium perfringens and controlling coccidia infections. Consequently, it may also help reduce necrotic enteritis (Guo et al., 2004; Mitsch et al., 2004; Oviedo-Rondón et al., 2005, 2006a, 2010).

Mode of action of phytomolecules

The gut health optimizing mode of action of phytomolecule-based preparations like Activo® (EW Nutrition) can be described as follows:

Digestive

The digestive properties increase the secretion of digestive enzymes and enhance gut motility. A “significant increase in pancreatic trypsin, amylase, and maltase activities in broilers fed different blends of commercial essential oils” has been reported as well (Jang et al., 2007). The essential oils in carvacrol, for instance, have positive effects on growth performance and the intestinal barrier function of broilers. They were also able to support repairing the intestinal damage caused by lipopolysaccharides (Liu et al. 2020).

Antimicrobial

The antimicrobial properties of phytomolecules can impede the growth of potential pathogens. Thymol, eugenol, and carvacrol have been shown to have “synergistic or additive antimicrobial effects when combined at lower concentrations” (Bassolé and Juliani, 2012). In in vivo studies, essential oils used either individually or in combination “have shown clear growth inhibition of Clostridium perfringens and E. coli in the hindgut and ameliorated intestinal lesions and weight loss than the challenged control birds” (Jamroz et al., 2006, Jerzsele et al., 2012, Mitsch et al., 2004).

One well-known mechanism of antibacterial activity is linked to the phytomolecules’  hydrophobic nature. This characteristic helps disrupt the permeability of cell membranes and cell homeostasis. The consequence of this disruption is the loss of cellular components, influx of other substances, or even cell death (Brenes and Roura, 2010, Solórzano-Santos and Miranda-Novales, 2012, Windisch et al., 2008, O’Bryan et al., 2015).

Antioxidant

The antioxidant properties at the gut level prevent free radical formation and oxidative stress. Thymol and carvacrol have been shown to inhibit lipid peroxidation (Hashemipour et.al. 2013), a mechanism leading to the oxidative destruction of cellular membranes (Rhee et al., 1996). This destruction can ultimately lead to cell death and to the production of toxic and reactive aldehyde metabolites, known as free radicals. Among these free radicals, malondialdehyde (MDA) as a final product of lipid peroxidation has often been used for determining oxidative damage (Jensen et al., 1997).  Thymol and carvacrol both have strong antioxidant activity (Yanishlieva et al., 1999). Oregano “added in doses of 50 to 100 mg/kg to the diet of chickens exerted an antioxidant effect in the broiler tissues” (Botsoglou et al., 2002).

It has also been suggested that chicken body oxidative balance can benefit from essential oils. Karadas et al. (2014) fed a blend of carvacrol, cinnamaldehyde, and capsicum oleoresin to Ross 308 broilers, and found a significant increase in the hepatic concentration of carotenoids and coenzyme Q10 at d 21 of age.

Essential oils, or phytomolecules, are highly volatile substances and are susceptible to changes caused by external factors such as light, oxygen, and temperature, in addition to being prone to evaporating. They need to be protected/micro-encapsulated during the process of feed manufacturing. The advantages of matrix encapsulation include

  • a slow and gradual release of active ingredients in the digestive tract
  • protection of phytomolecules from oxidation and other harsh conditions during feed processing
  • prevention of any negative effects on palatability of feed

Above: Micro-encapsulation protecting phytomolecules in feed processing

Apart from use in feed, the liquid phytomolecules preparations for drinking water use can prove to be beneficial in preventing and controling losses during challenging periods of the birds’ life (feed change, handling, environmental stress, etc.).  The liquid preparations have the potential to reduce morbidity and mortality in poultry houses and thus the use therapeutic antibiotics. Barrios et al. (2021) suggested that Activo and Activo Liquid may ameliorate the impact of Necrotic Enteritis on broilers and further hypothesized that the effects of Activo Liquid were particularly important in improving overall mortality.

Conclusion

The prevailing driving forces of the market will continue to challenge the dynamic poultry industry. Still, gut health challenges in ABF poultry production can be alleviated with multifactorial approaches, including changes in nutrition and improved management practices. Innovative feed additive technologies have contributed to reducing production losses triggered by the removal of AGPs in poultry production.

Essential oils/phytomolecules are one such promising technology, with proven benefits in terms of the production performance of poultry. Phytomolecules are generally recognized as safe and are commonly used in the food industry. Some of the phytomolecules combinations have multiple modes of action, supporting an efficient and sustainable reduction in antibiotics use in poultry production.

To make ABF programs successful, however, more attention needs to be given to the whole production system, not only to feed, feed additives or control of a few enteric pathogens. Housing, management, water quality and biosecurity at both breeder and grow-out levels are critical in ABF production.

 


References

Acamovic, T., and J. D. Brooker. 2005. Biochemistry of plant secondary metabolites and their effects in animals. Proc. Nutr. Soc. 64:403–412.

Adeola, O & Cowieson, AJ (2011) Opportunities and challenges in using exogenous enzymes to improve non-ruminant animal production. J Anim Sci 89, 3189–3218. CrossRef  Google Scholar

Barrios Miguel, Palanisamy Kowsigaraj and Bhoyar Ajay. 2021 Effects of Activo and Activo Liquid on broiler chickens under a Necrotic Enteritis challenge. International poultry scientific forum. Jan 25-26, 2021.

Bassolé, I.H.N. and Juliani, H.R., 2012. Essential oils in combination and their antimicrobial properties. Molecules, 17(4), pp.3989-4006.

Bedford M. R. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci. Technol., 53 (1995), pp. 145-155

Botsoglou, N.A., Florou-Paneri, P., Christaki, E., Fletouris, D.J. and Spais, A.B., 2002. Effect of dietary oregano essential oil on performance of chickens and on iron-induced lipid oxidation of breast, thigh and abdominal fat tissues. British poultry science43(2), pp.223-230.

Brenes, A. and Roura, E., 2010. Essential oils in poultry nutrition: Main effects and modes of action. Animal feed science and technology, 158(1-2), pp.1-14.

Chowdhury S, Mandal G. P., Patra  A K, Different essential oils in diets of chickens: 1. Growth performance, nutrient utilisation, nitrogen excretion, carcass traits and chemical composition of meat, Animal Feed Science and Technology, Volume 236, 2018, Pages 86-97,

Grenier, B. and Applegate, T.J., 2013. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins, 5(2), pp.396-430.

Guo, F.C., Kwakkel, R.P., Williams, B.A., Li, W.K., Li, H.S., Luo, J.Y., Li, X.P., Wei, Y.X., Yan, Z.T. and Verstegen, M.W.A., 2004. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on growth performance of broilers. British Poultry Science45(5), pp.684-694.

Hashemipour H, Kermanshahi H, Golian A, Veldkamp T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poultry Science. Volume 92. Issue 8. 2013, Pp 2059-2069,

Hector M. Cervantes, Antibiotic-free poultry production: Is it sustainable?, Journal of Applied Poultry Research, Volume 24, Issue 1, 2015, Pages 91-97

Hernandez, F., J. Madrid, V. Garcia, J. Orengo, and M. D. Megias. 2004. Influence of two plant extracts on broiler performance, digestibility, and digestive organ size. Poult. Sci. 83:169–174.

Huyghebaert G, Ducatelle R, Van Immerseel F. An update on alternative to antimicrobial growth promoter for broilers. Vet J. (2010) 187:182–8. doi: 10.1016/j.tvjl.2010.03.003

Jamroz, D., Wertelecki, T., Houszka, M. and Kamel, C., 2006. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. Journal of Animal Physiology and Animal Nutrition, 90(5‐6), pp.255-268.

Jang IS, Ko YH, Kang SY, Lee CY. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology. 2007 Apr 2;134(3-4):304-15.

Jensen, C., Engberg, R., Jakobsen, K., Skibsted, L.H. and Bertelsen, G., 1997. Influence of the oxidative quality of dietary oil on broiler meat storage stability. Meat Science, 47(3-4), pp.211-222.

Jerzsele, A., Szeker, K., Csizinszky, R., Gere, E., Jakab, C., Mallo, J.J. and Galfi, P., 2012. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poultry Science, 91(4), pp.837-843.

Jha, Rajesh, Das Razib, Oak Sophia, and Mishra Pavin. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals : an open access journal from MDPI vol. 10,10 1863. 13 Oct. 2020, doi:10.3390/ani10101863

Jha, R., Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Animal Sci Biotechnol 12, 51 (2021). https://doi.org/10.1186/s40104-021-00576-0.

Jiménez-Moreno E, Mateos GG. Use of dietery fiber in broilers. San Juan del Rio, Queretaro: In Memorias De La Sexta Reunión Anual Aecacem 2013; 2013.

Karadas F., Pirgozliev V., Rose S., Dimitrov D., Oduguwa O., Bravo D. Dietary essential oils improve the hepatic antioxidative status of broiler chickens. Br Poult Sci. 2014;55:329–334. [PubMed] [Google Scholar] [Ref list]

Kiarie, E., Romero, L., & Nyachoti, C. (2013). The role of added feed enzymes in promoting gut health in swine and poultry. Nutrition Research Reviews, 26(1), 71-88. doi:10.1017/S0954422413000048

Krishan and Narang J. Adv. Vet. Anim. Res., 1(4): 156-162, December 2014

Liu, S., Song, M., Yun, W., Lee, J., Lee, C., Kwak, W., Han, N., Kim, H. and Cho, J., 2018. Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. Journal of animal physiology and animal nutrition, 102(5), pp.1257-1265.

Liu, S., Song, M., Yun, W., Lee, J., Kim, H. and Cho, J., 2020. Effect of carvacrol essential oils on growth performance and intestinal barrier function in broilers with lipopolysaccharide challenge. Animal Production Science, 60(4), pp.545-552.

Mateos GG, Jiménez-Moreno E, Serrano MP, Lázaro RP. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J Appl Poult Res. 2012;21(1):156–74.

Mitsch, P., Zitterl-Eglseer, K., Köhler, B., Gabler, C., Losa, R. and Zimpernik, I., 2004. The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poultry science83(4), pp.669-675.

Murugesan, G.R., Ledoux, D.R., Naehrer, K., Berthiller, F., Applegate, T.J., Grenier, B., Phillips, T.D. and Schatzmayr, G., 2015. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry science, 94(6), pp.1298-1315.

O’Bryan, C.A., Pendleton, S.J., Crandall, P.G. and Ricke, S.C., 2015. Potential of plant essential oils and their components in animal agriculture–in vitro studies on antibacterial mode of action. Frontiers in veterinary science, 2, p.35.

Oviedo-Rondón, Edgar O., et al. “Ileal and caecal microbial populations in broilers given specific essential oil blends and probiotics in two consecutive grow-outs.” Avian Biology Research 3.4 (2010): 157-169.

Oviedo-Rondón Edgar O., Holistic view of intestinal health in poultry, Animal Feed Science and Technology, Volume 250, 2019, Pages 1-8

Papatisiros VG, Katsoulos PD, Koutoulis KC, Karatzia M, Dedousi A, Christodoulopoulos G. Alternatives to antibiotics for farm animals. CAB Rev Ag Vet Sci Nutr Res. (2013) 8:1–15. doi: 10.1079/PAVSNNR20138032

Solórzano-Santos, F. and Miranda-Novales, M.G., 2012. Essential oils from aromatic herbs as antimicrobial agents. Current opinion in biotechnology, 23(2), pp.136-141.

Williams, P., and R. Losa. 2001. The use of essential oils and their compounds in poultry nutrition. World Poult. 17:14–15.

Windisch, W., Schedle, K., Plitzner, C. and Kroismayr, A., 2008. Use of phytogenic products as feed additives for swine and poultry. Journal of animal science, 86(suppl_14), pp.E140-E148.

Yang Y, Iji P, Choct M. 2009. Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World Poultry Sci J. 65:97–114. doi: 10.1017/S0043933909000087 [Taylor & Francis Online][Web of Science ®][Google Scholar]

Yanishlieva, N.V., Marinova, E.M., Gordon, M.H. and Raneva, V.G., 1999. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry64(1), pp.59-66.

Yegani, M. and Korver, D.R., 2008. Factors affecting intestinal health in poultry. Poultry science, 87(10), pp.2052-2063.

Zhai, H., H. Liu, Shikui Wang, Jinlong Wu and Anna-Maria Kluenter. “Potential of essential oils for poultry and pigs.” Animal Nutrition 4 (2018): 179 – 186.

 




Dysbacteriosis and gut health management in poultry

broiler dsc02107 trat gross

by  Dr. Srinivasan Mahendran, Regional Technical Manager – India, EW Nutrition, and Dr. Ajay Bhoyar, Global Technical Manager – Poultry, EW Nutrition

The growing restrictions on the use of antibiotics growth promoters (AGPs), as well as the development of resistance to some routinely used antimicrobials in the recent past, have increased the incidence of dysbacteriosis within intensive poultry farming. What is the solution to maintaining gut health and animal performance in these circumstances?

poultry

What is dysbacteriosis?

Dysbacteriosis has been defined as the presence of a qualitatively and/or quantitatively abnormal microbiota in the proximal parts of the small intestine. This abnormal microbiota produces a cascade of reactions in the gastrointestinal tract, including reduced nutrient digestibility and impaired intestinal barrier function, increasing the risk of bacterial translocation and inflammatory responses (Panneman, 2000; Van der Klis, 2000 and Lensing, 2007).  Dysbacteriosis is not a specific disease but a secondary syndrome. Along the entire GI tract, there is a diverse microbial community comprised of bacteria, yeasts, archaea, ciliate protozoa, anaerobic fungi, and bacteriophages, commonly referred to as the intestinal microbiota.

Dysbacteriosis is an imbalance in the gut microbiota as a consequence of an intestinal disruption. The impact of dysbacteriosis can be separated into economic and welfare issues (Bailey, 2010). Dysbacteriosis can lead to very wet litter and caking issues. The prolonged contact of broilers with the caked litter can result in painful ulceration of the feet and hocks (pododermatitis and hock-burn), leading to a serious welfare issue and degradation of the carcass.

Apart from these issues, a major economic impact comes from reduced growth rates, FCR, and increased veterinary treatment costs (Kizerwetter-Świda and Binek, 2008).

Causes of dysbacteriosis

It is believed that both non-infectious and infectious factors can play a role in dysbacteriosis (DeGussem, 2007).

Non-infectious causes are:

  • Diet
  • Brooding
  • Biosecurity
  • Risk periods
  • Environmental conditions

Diet

Intestinal bacteria derive most of their energy from dietary compounds. Thus, diet has a major influence over the bacterial populations (Apajalahti et al., 2004). Any change in feed and feed raw materials, as well as the physical quality of feed, influence the balance of the gut microbiota. Processing significantly affects the characteristics of the feed as a substrate for the bacterial community. Perhaps the temperature and pressure of the conditioning process give its characteristic signature to the bacterial community structure.

Inappropriate brooding conditions

The provision of optimal brooding conditions is essential for ensuring optimal gut microbiota development. Birds receiving appropriate brooding develop a gut that performs well and has a greater capacity to cope with the challenges of the broiler shed. Early access to feed and water is crucial. One of the most critical factors for the occurrence of dysbacteriosis is the lack of digesta. The microbiota can change in a period of hours when nutrients are not present. The quality of water is also essential to maintain normal intestinal function and digesta pH.

Faulty biosecurity

If clean-out and disinfection procedures are improperly conducted, pathogens will be introduced into the poultry shed, and exposure to these pathogens will influence gut health and development. It has been proven that litter management regimes affect chicken gastrointestinal tract (GIT) and microbiota (Wang et al., 2016)

Risk periods

There are times during poultry production when the bird will be challenged, for example, during feed changeovers, vaccination handling and transportation, overcrowding, or placement in new housing. During these periods, the gut microbiota can fluctuate and, in some cases, if management is sub-optimal, dysbacteriosis can occur.

Environmental conditions

Achieving optimal environmental conditions will promote good gut health. Any perturbation in gastroenteric physiology or immunity of the bird, caused by temperature stress or other environmental discomforts, can cause dysbacteriosis and/or enteritis. These are associated with lower absorption of nutrients by the host. Suzuki et al. 1983 demonstrated that overcrowding and heat stress, very commonly seen in intensive poultry farming, has a significant impact on the microbiota of chickens.

 

Infectious agents that potentially play a role in dysbacteriosis

  • Mycotoxins
  • Eimeria spp.
  • Clostridium perfringens
  • Other bacteria producing toxic metabolites

Mycotoxins

Many mycotoxins can stimulate the secretion of several antimicrobial molecules, which have positive effects on the maintenance of intestinal homeostasis. Fumonisins inhibit the growth of fungi, Fusarium toxins exhibit different antimicrobial defensive mechanisms, and aflatoxins exhibit a moderate antimicrobial activity against Escherichia coli, Bacillus subtilis, and Enterobacter aerogenes [Bevins et al. 1999 and Wan et al.2013]. Mycotoxins such as aflatoxins, trichothecenes, zearalenone, fumonisin, and ochratoxin can alter the normal intestinal functions, such as the barrier function and nutrient absorption. Some mycotoxins, like trichothecenes and ochratoxin, affect the histomorphology of the intestine (Winnie et al., 2018). Mycotoxicosis changes the population equilibrium, which can lead to dysbacteriosis.

Eimeria spp.

Coccidiosis caused by Eimeria spp. in chickens appears to be one of the principal destabilizing agents, causing the destruction of enterocytes and affecting the integrity of the intestinal mucosa and wall. The lesions that it causes, the inflammatory process, the reduced absorption and consequent excess of nutrients in the lumen all contribute to the proliferation of certain groups of bacteria. This situation clearly predisposes birds to intestinal dysbacteriosis and/or bacterial enteritis, and in particular to necrotic enteritis.

Clostridium perfringens

Clostridium perfringens is a natural part of the habitat in the hindgut that is not dangerous under normal circumstances. If it multiplies, the bacterium produces toxic substances that damage the intestinal mucosa and cause a condition called necrotic enteritis.  The disease is characterized by necrosis and inflammation of the GIT. Without treatment, this can escalate to perforation of the intestines, hemorrhages, and eventual death from septic shock.

Signs and consequences of dysbacteriosis

Dysbacteriosis can have profound effects on the host. Dysbacteriosis alters the GIT environment and favors the growth of pathogenic bacteria. Pathogenic bacteria produce toxins that increase intestinal motility or cause alterations in the amounts of mucus produced or in its composition. They also result in modifications of gastric acidity, reduction in the production of bacteriostatic peptides in the pancreas, and reduced immunoglobulin (IgA) secretion.

Toxins released by entero-pathogens damage intestinal villi, resulting in focal ulcerations of the mucosa, tissue necrosis, and shifts in gut microorganism numbers and metabolism. The costliest condition for animal production is the chronic inflammatory response of the animal to constant minor dysbacteriosis. These chronic responses can reduce weight gain and cause low feed conversion efficiency. Coccidiosis infections and any other enteric disease can be aggravated when dysbacteriosis is prevalent. Generally, animals with dysbacteriosis have high concentrations of Clostridium that generate more toxins, leading to necrotic enteritis.

In broilers, the syndrome is generally seen between 20 and 30 days of age (Wilson et al., 2005). Clinically, the main signs are:

  • pale, glistening or orange droppings with undigested food particles
  • wet and greasy droppings and hence dirty feathers
  • sometimes foamy caecal droppings
  • reduced physical activity
  • increased water intake
  • decrease in feed intake with a check in weight or reduced gain rates
  • increased feed conversion

(Wilson et al., 2005; De Gussem, 2007)

Wet litter is also a general outcome of dysbacteriosis that may affect the air quality of the house, leading to a higher incidence of respiratory problems.

Additionally, foodborne pathogens such as Salmonella spp. and E.coli proliferate more in the dysbiotic intestine and can become persistent residents of the hindgut.

At necropsy, the main observations are

  • a thin, fragile, often translucent intestinal wall
  • watery or foamy intestinal contents
  • frequent orange mucus and undigested particles in the intestines
  • ballooning of the gut
  • intestinal inflammation

(Pattison, 2002; De Gussem,2007)

 

Prevention of dysbacteriosis

The most important factors to prevent dysbacteriosis are

  • Minimizing environmental stress
  • Maintaining good water quality
  • Improving feed digestibility
  • Avoiding antinutritional factors, mycotoxins, and rancidity
  • Feed additives that could modulate microbial component and avoid dysbacteriosis

Growth-promoting antibiotics are well known for the inhibition of undesired microbiota and the negative effects of their metabolites, and selection for beneficial bacteria. However, the adverse result is that they diminish the natural diversity of the gut microbiota. Antibiotics can also result in animals developing bacterial resistance.

Other products have been proposed as alternatives to growth promotion, taking into consideration the increasing bacterial resistance to some antibiotic categories.

Alternate feed additive technologies that have a promising role in controlling dysbacteriosis are:

  • Probiotics
  • Prebiotics
  • Enzymes
  • Organic acids
  • Essential oils and phytomolecules

Probiotics

The post-hatch period is very critical for the chicks’ intestine development. Exposure to the environment in hatchery and farm affects microbial colonization in the intestine tract. The use of selective probiotics in day-old chicks at the hatchery and on the farm immediately after placement in broiler house reduces the risk of dysbacteriosis. Probiotics work by competitive exclusion, thereby prevent the colonization of potentially pathogenic bacteria. Probiotics prevent enteric diseases, improves intestine development and digestion process.

The benefits include enhanced growth and laying performance, improved gut histomorphology, immunity, and an increase in beneficial microbiota (Rajesh Jha et al., 2020)

Prebiotics: Mannan Oligosaccharide

(MOS) mimics the properties of the cells on the gut wall to attract and bind with harmful bacteria. Rather than allowing the bad bacteria to attach to the gut wall, the MOS acts as a sticky sponge, clearing up the harmful bacteria and removing them from the digestive system. MOS play an important role in gut functionality and health, through enhanced nutrient digestibility and improved gut barrier function and local defenses. MOS is also related to long villi and shallow crypts in the intestine, so a larger surface area helped with the absorption of nutrients and improved animal performance (Chand et al., 2016b)

Enzymes

Careful choice of feed enzymes will reduce nutrients available for pathogenic bacterial growth and improve gut health. Bacterial Xylanase is showing promise by digesting both soluble and insoluble arabinoxylans and reducing the viscosity of intestinal content. It maintains gut motility, improves nutrients digestibility, and impairs the growth of pathogenic bacteria in the hindgut.

Organic acids

Organic acids ameliorate the conditions of the GIT through the reduction of GIT pH, promoting proteolytic enzyme activity, intensifying pancreatic secretions. They encourage digestive enzyme activity and nutrient digestibility. Organic acids are creating stability of the microbial population by stimulating the growth of beneficial bacteriaPapatisiros et al., 2013).

Phytomolecules

Multiple scientific studies have proven the positive effects of phytomolecules (also known as phytogenics or secondary plant compounds) on the gut health of livestock animals. These substances support digestion and improve the utilization of nutrients. This results in higher daily weight gain and better feed conversion. In addition, phytomolecules have a proven antimicrobial effect, based on different biological modes of action.

EW Nutrition offers standardized phytomolecule-based solutions (Activo and Activo Liquid) that positively influence gut health and subsequent performance parameters in poultry. In scientific studies, the Activo product line has shown a positive effect on gut pathogenic bacteria, reducing necrotic enteritis (Fig 1) and improving production performance.

Necrotic enteritis score with Activo

Conclusion

Dysbacteriosis can have profound effects on the host. Acute dysbacteriosis can result in the proliferation of pathogenic microorganisms that become enteropathogenic. Pathogenic bacteria can produce toxins and metabolites that increase gut motility, increase fermentation with gas production, change gut pH, irritate the mucosa, cause inflammation, and increase mucous secretion. This process reduces the digestibility and absorption of nutrients.

Maintaining the equilibrium of the gut ecosystem is key to avoiding dysbacteriosis. Improving feed digestibility and using feed additives that modulate gut microflora help to maintain more stable gut ecosystems, even during periods of intestinal stress preventing dysbacteriosis. Effective prevention and control of dysbacteriosis help increase poultry operations’ economic profitability by way of improved performance, health, and welfare, and reduce foodborne pathogens and environmental impact of poultry production.

 

 

References

Apajalahti, J., Kettunen, A., and H. Graham. 2004. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World Poultry Sci J 60:223- 232.

Bailey, Richard A. 2010. Intestinal microbiota and the pathogenesis of dysbacteriosis in broiler chickens. PhD thesis submitted to the University of East Anglia. Institute of Food Research, United Kingdom.

Bevins, C. L.; Martin-Porter, E.; Ganz, T. Defensins and innate host defence of the gastrointestinal tract. Gut, 1999, 45, 911–915.

De Gussem , M. 2007. Coccidiosis in poultry: review on diagnosis, control, prevention and interaction with overall gut health . In Proceedings of the XVI European  Symposium on Poultry Nutrition (pp. 160 169 . Strasbourg , France.

Gurrre, Philippe. 2020. Review Mycotoxin and Gut Microbiota Interactions. Toxins, 12, 769.

Jha, Rajesh, Razib Das, Sophia Oak, and Pravin Mishra, 2020. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals (Basel). 10(10): 1863.

Kizerwetter-Świda, M., and M. Binek. 2008. Bacterial microflora of the chicken embryos and newly hatched chicken. Journal of Animal and Feed Sciences 17:224-232

Panneman, H. 2000 . Clostridial enteritis/dysbacteriosis, fast diagnosis by T-RFLP, a novel diagnostic tool. In Proceedings of the Elanco Global Enteritis Symposium. Cork Ireland.

Papatisiros VG, Katsoulos PD, Koutoulis KC, Karatzia M, Dedousi A, Christodoulopoulos G. Alternatives to antibiotics for farm animals. CAB Rev Ag Vet Sci Nutr Res. (2013) 8:1–15. doi: 10.1079/PAVSNNR20138032.

Pui-Pui, Winnie, and Sabran Mohd-Redzwan. 2018. Mycotoxin: Its Impact on Gut Health and Microbiota. Frontiers in Cellular and Infection Microbiology, 8:60.

Rebel, J.M.J., Balk, F.R.M., Post, J., Van Hemert, S., Zekarias, B. and Stockhofe, N. 2006. Malabsorption syndrome in broilers. World’s Poultry Science Journal, 62: 17–29.

Saeed, Mohammad, Fawwad Ahmad, Mohammad Asif Arain, Mohamed E Abd El-Hack, Mohamed Emam, Zohaib Ahmed Bhutto and Arman Moshaven, 2017. Use of Mannen – Oligosaccharides (MOS) As a Feed Additive in Poultry Nutrition. J. World Poult. Res. 7(3): 94-103.

Suzuki, K., R. Harasawa, Y. Yoshitake, and T. Mitsuoka. 1983. Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Nippon Juigaku Zasshi 45:331-8.

Van der Klis, J.D. and Lensing, M. 2007. Wet litter problems relate to host–microbiota interactions. World Poultry, 23: 20–22.

Wan, M. L.; Woo, C. S.; Allen, K. J.; Turner, P. C.; El-Nezami, H. Modulation of porcine-defensins 1 and 2 upon individual and combined fusarium toxin exposure in a swine jejunal epithelial cell line. App. l. Environ. Microbiol., 2013, 79(7), 2225-2232

Wang L, Lilburn M, Zhongtang Y. 2016. Intestinal microbiota of broiler chickens as affected by litter management regimens Front. Microbiol (2016).

Wilson, J., Tice, G., Brash, M.L. and St Hilaire, S. 2005. Manifestations of Clostridium perfringens and related bacterial enteritides in broiler chickens. Worlds Poultry Science Journal, 61: 435–449.




Want antibiotic-free broilers? Raise low-AB breeders

CHICKEN Kueken Gruppe Mix WEB

day old chicks antibiotic free

Strong demand by consumers; restaurant chains and wholesalers for antibiotic-free (ABF) meat; the threat of antimicrobial resistance; and stringent regulations on the use of antibiotics – there are many good reasons for poultry producers to strive for antibiotic-free production systems. Crucially, to successfully produce poultry meat without antibiotics requires a paradigm shift that starts right at the parent stock level, with the antibiotic-free production of hatching eggs.

Broiler breeders’ gut health is linked to progeny’s performance

Broiler breeders’ performance is measured in terms of how many saleable day old chicks (DOCs) per hen they produce. However, within a sustainable ABF production system (also known as No Antibiotics Ever or NAE), this parameter is not seen in isolation. Breeder hens’ nutritional and health status not only affect the number of DOCs they can produce, but also the transfer of nutrients, antibodies, microbiota and even contaminants, e.g. mycotoxins, to the egg – and therefore, their progeny’s long-term health and performance.

This starts with egg formation, which requires several metabolic processes in the hen to function perfectly. If the hen’s intestinal integrity is compromised, for example due to mycotoxins, she will absorb fewer nutrients, which in turn affects egg formation. Mycotoxicosis has particularly insidious effects for egg formation as it can damage the liver whose biosynthetic activities strongly impact on the egg’s internal (yolk) and external (eggshell) quality.

Chick embryos depend on the maternal antibodies and nutrients deposited in the yolk, including vitamin D3, carotenoids, and fatty acids, to develop normally. Eggshell quality, among other things, affects the embryo’s access to oxygen, which is especially important when it develops body tissues.

Hens’ ability to form healthy eggs depends on their diet and health. Research indicates that, via the impact on egg formation, broiler breeders’ feeding program quantifiably influences their progeny’s immune system and intestinal health. There is indeed a direct relationship between parent and offspring’s gut health because the chick’s microbiome is in part also inherited from the hen. The impact on DOC quality is thus one of many dimensions to consider when calibrating one’s broiler breeders feeding approach.

The challenge of feeding an ABF broiler breeder

Just as their offspring, breeder hens are genetically predisposed for rapid growth and muscle development. From rearing right through to the laying period, poultry nutritionists need to carefully balance their diets and moderate weight gain in order for hens to reach their reproductive potential.

Different stages of a breeder’s life cycle come with different objectives – for example, good flock uniformity in the rearing period versus egg size and hatchability in the laying phase – and thus different requirements in terms of calories, amino acids, vitamins, and minerals. What remains constant is that the actual nutrient intake depends on intestinal health, determining both the breeders’ performance and, via the impact on egg characteristics, its progeny’s performance.

The feeding regimes adopted to avoid hens becoming overweight can have a negative effect on their gut flora. Without antibiotics as a tool to maintain or recover optimal gut function, even mild intestinal disorders can quickly become chronical impairments that negatively impact breeders’ productivity. In ABF production systems, intestinal health therefore needs to be a central focus for the feeding strategy.

Can phytomolecules improve broiler breeders’ performance?

Among the plethora of feed additives, phytomolecules, or secondary plant compounds, stand out as a class of active ingredients that may help to improve gut health and thereby reduce the use of antibiotics.  Synthesized by plants as a defense mechanism against pathogens, phytomolecules combine digestive, antimicrobial and antioxidant properties.

Some studies have shown that phytomolecules-based products can increase broilers’ body weight gain and improve laying hens’ laying rate, egg mass and egg weight. Both broilers and laying hens responded to the inclusion of phytomolecules in their diet with inclusion rate-dependent improvements in feed conversion. To evaluate if phytomolecules could similarly improve broiler breeders’ performance, two trials were conducted.

Study I: Effect of phytomolecules on laying performance during peak production

The first study was set up on a farm in Thailand. In total, 40000 Cobb broiler breeders (85% female, 15% male) were divided into two groups with 8500 hens (one house) in the control and 25500 (three houses) in the trial group. Both groups were fed standard feed. The trial group additionally received a phytomolecules-based liquid complementary feed (Activo® Liquid, EW Nutrition GmbH) via the waterline from week 24 to week 32 at a rate of 200ml/1000L during 5 days per week.

Activo® Liquid was found to have a positive influence on laying performance (Figure 1). The average laying rate increased by 7.2% during the trial period, resulting in almost 3 additional hatching eggs per hen housed. A further indication of the beneficial influence that this particular combination of phytomolecules had on gut health was a 0.2% lower mortality.

Figure 1: Laying rate (%) of breeder hens during first 9 weeks of production

Study II: Effect of phytomolecules on laying performance after peak production

For a second study, conducted in the Czech Republic, 800 female and 80 male Hubbard breeders (JA57 and M77, respectively) were divided into 2 groups with 5 replicate pens and 80 female and 8 male breeders per pen. The experiment started after the peak-production period, at 34 weeks of age and ended at 62 weeks of age. All animals received a standard mash diet. For one group a phytogenic premix (Activo®, EW Nutrition GmbH) was added to the diet at a rate of 100g/MT.

The results indicate that Activo® helped maintain the breeder hens’ egg laying performance close to the breed’s genetic potential (Figure 2). In the course of the experiment, Activo® supplemented birds produced 3.6 more eggs than control birds, while consuming a similar amount of feed. As a result, feed consumption per egg produced was lower for birds receiving phytomolecules than for the control birds (169.9 versus 173.6g/d, respectively).

As hatchability was not influenced by the dietary treatment in this study (P>0.5), the 3.6 extra eggs resulted in 2.9 extra day old chicks per hen produced, during the post-peak period alone.
The microencapsulated, selected phytomolecules contained in Activo® are likely to have improved gut health and feed digestibility, and thereby enhanced the animals’ feed efficiency.

Figure 2: Laying rate (%) of breeder hens week 35 till 62

 

Chicken or egg? Antibiotic-free poultry production looks at the bigger picture

To successfully produce antibiotic-free poultry meat requires a systematic re-think of each component of the production process. Broiler breeders’ lay the foundation for their progeny’s health and performance via the egg. Breeder hens need to be in optimal health to consistently deliver optimal eggs. Without recourse to antibiotics for maintaining or recovering intestinal functionality, an effective ABF production needs to make gut health central to its feeding approach.

The trials reviewed demonstrate that selected phytomolecules quantifiably boost breeders’ laying performance, increasing the number of hatching eggs and DOCs, while reducing mortality and feed consumption per egg produced. As part of an intelligent antibiotic reduction strategy, the right phytogenic products can be potent tools to help poultry producers achieve their NAE objectives.

by S. Regragui Mazili, T. van Gerwe and M. Caballero

References

Calini, F., and F. Sirri. “Breeder Nutrition and Offspring Performance.” Revista Brasileira De Ciência Avícola 9, no. 2 (2007): 77-83. doi:10.1590/s1516-635×2007000200001.

Ding, Jinmei, Ronghua Dai, Lingyu Yang, Chuan He, Ke Xu, Shuyun Liu, Wenjing Zhao, et al. “Inheritance and Establishment of Gut Microbiota in Chickens.” Frontiers in Microbiology 8 (October 10, 2017): 1967.

Kuttappan, Vivek A., Eduardo A. Vicuña, Juan D. Latorre, Amanda D. Wolfenden, Guillermo I. Téllez, Billy M. Hargis, and Lisa R. Bielke. “Evaluation of Gastrointestinal Leakage in Multiple Enteric Inflammation Models in Chickens.” Frontiers in Veterinary Science 2 (December 14, 2015): 66.

Moraes, Vera M. B., Edgar O. Oviedo-Rondón, Nadja S. M. Leandro, Michael J. Wineland, Ramon D. Malheiros, and Pamela Eusebio-Balcazar. “Broiler Breeder Trace Mineral Nutrition and Feeding Practices on Embryo Progeny Development.” Avian Biology Research 4, no. 3 (2011): 122–32.

Oviedo-Rondon, Edgar O., Nadja S. M. Leandro, Rizwana Ali, Matthew Koci, Vera M. B. Moraes, and John Brake. “Broiler Breeder Feeding Programs and Trace Minerals on Maternal Antibody Transfer and Broiler Humoral Immune response1.” The Journal of Applied Poultry Research 22, no. 3 (October 1, 2013): 499–510.




Poultry health and welfare: Phytomolecules for poultry diets

Poultry SP BR

The large majority of poultry specialists in Europe consider phytomolecules as one of the key elements in diets for broilers, broiler breeders, and layers when birds are raised without antibiotics. A quick glance at the market will reveal more commercial products than can possibly be imagined. There are three basic elements you should bear in mind when making your choice:

  1. Most phytomolecules are volatile. As such, unprotected products will soon evaporate if left exposed to the open air – as it happens, for instance, with feed prepared in commercial farms. Microencapsulation is therefore essential.
  2. There are countless phytomolecules. Consequently, finding the right mix for the task required is essential, as not all mixtures will get you the desired result. When designing a phytomolecule mix, the manufacturer must have the necessary knowledge and experience to achieve the desired result.
  3. Phytomolecules are powerful. This is to say that you cannot just keep adding higher quantities to achieve a better result. Finding the exact inclusion rates for the right purpose is a difficult balancing exercise.

In fact, the right protection, the right mix and the right inclusion rates must be combined to ensure that the animals do not refuse the feed (worst case scenario) or just fail to benefit from the inclusion of phytomolecules.

Among the feed additives, phytomolecules (or secondary plant compounds) stand out as a class of active ingredients that may help to improve gut health and thereby reduce the use of antibiotics.  Synthesized by plants as a defense mechanism against pathogens, phytomolecules promote the digestion of feed ingredients (Zhai et al. 2018), prevent loss of gut integrity during enteric challenges (Liu et al. 2018), and have antimicrobial properties that hinder the growth of potential pathogens (Chowdhury, 2018). Phytomolecules can prevent the overgrowth of opportunistic pathogens, thereby reducing the frequency of occurrence of diseases such as necrotic enteritis and dysbacteriosis and thus improve performance data such as daily weight gain and feed efficiency.

Beyond the phytomolecules’ proven effects, what works best in supporting the health and welfare of your animals is, in fact, a holistic program (such as those offered by EW Nutrition) that consists of an effective combination of innovative products and consultancy services in the fields of gut health, nutrition, AMR monitoring, and biosecurity management.

*This article is available in Dutch.