

EUROPEAN CHALLENGES IN SWINE PRODUCTION:

A vision from Spain

Rafa Pedrazuela

Swine Business Unit Manager

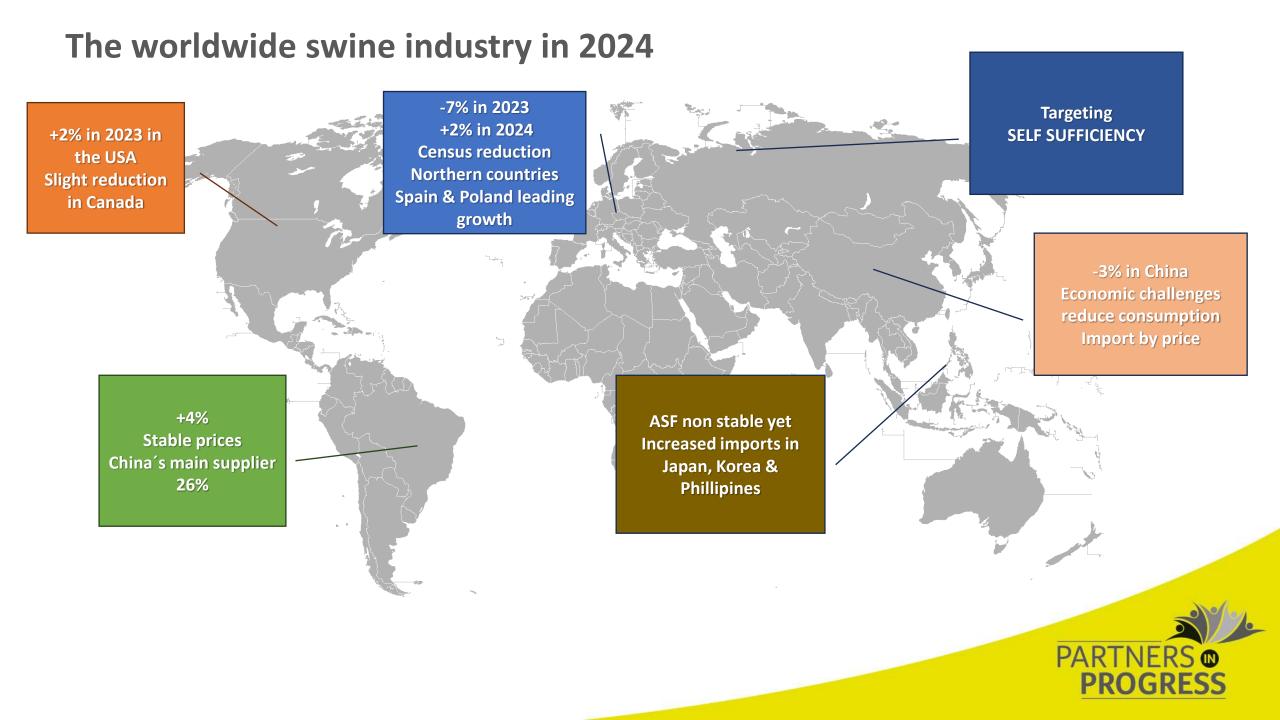
CEVA ANIMAL HEALTH

The AGENDA

- 1. THE CHALLENGES
- 2. SOME MACRO NUMBERS ABOUT THE PORK PRODUCTION & CONSUMPTION
- 3. THE EU NEW REGULATION
- 4. THE PRRS SITUATION IN SPAIN
- 5. CONCLUSIONS

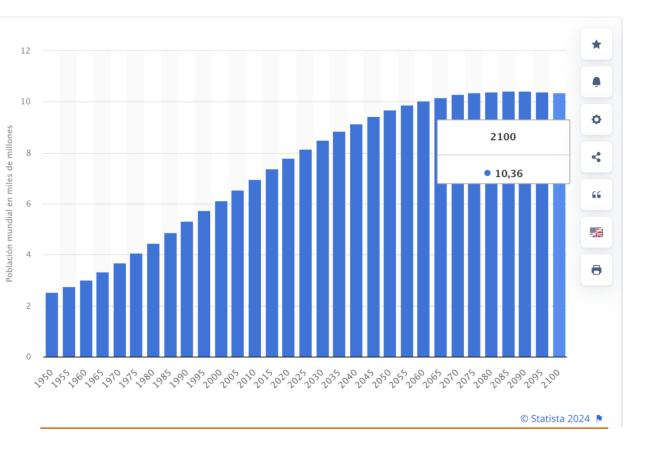
Challenges

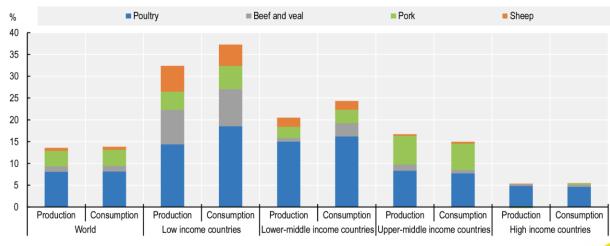
ANTIBIOTIC REDUCTION


HEALTH CHALLENGES

SUSTAINABILITY/GROWTH

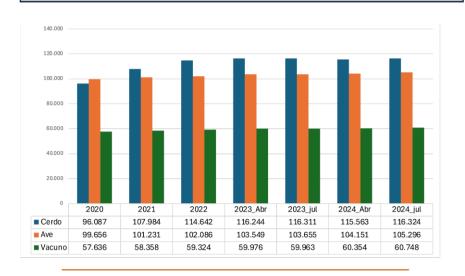
TECHNOLOGY & DIGITALIZATION




The worldwide swine industry in 2024

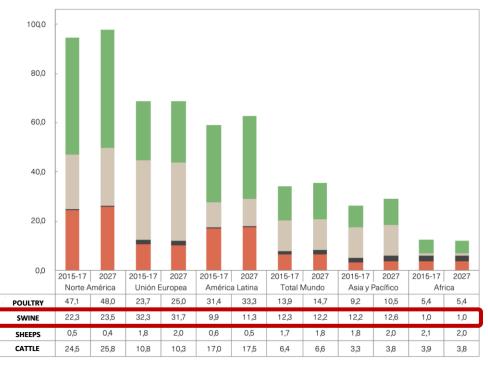
WORLDWIDE POPULATION PROJECTION

GROWTH IN MEAT PRODUCTION & CONSUMPTION


Figure 6.1. Growth in meat production and consumption on a protein basis, 2021 to 2030



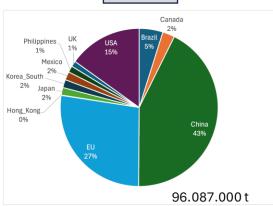
The worldwide swine industry in 2024

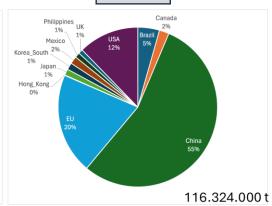

WORLDWIDE MEAT PRODUCTION

WORLDWIDE MEAT CONSUMPTION

WORLDWIDE MEAT CONSUMPTION PER CAPITA

Fuente: OCDE-FAO (2023).




The worldwide swine industry in 2024

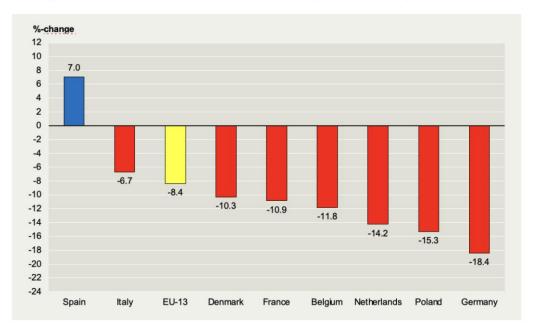
SWINE POPULATION DISTRIBUTION

2020

2024 J

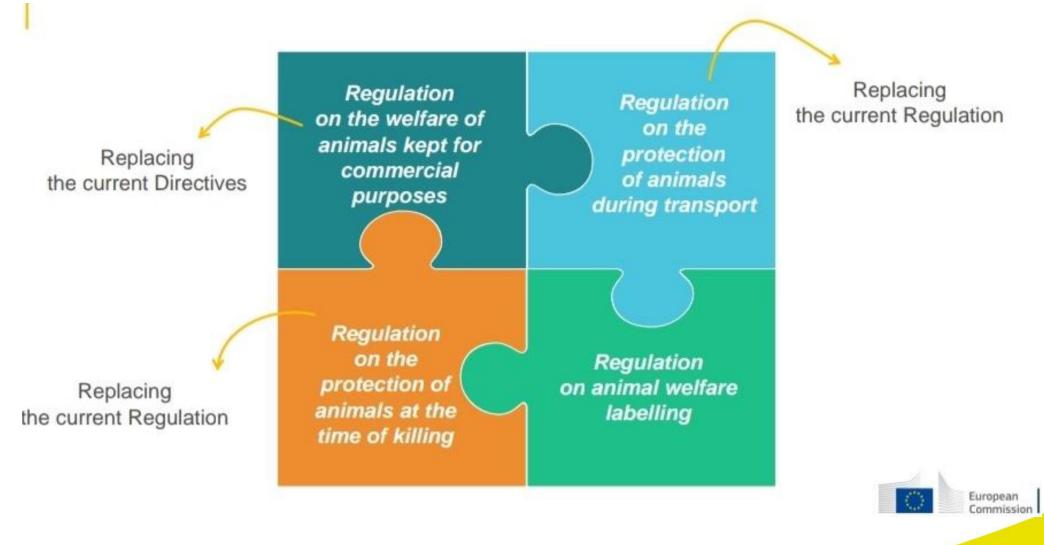
EU SWINE CENSUS

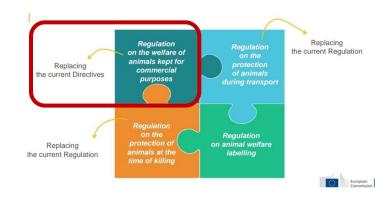
EU Pig Herd, May/June 2024



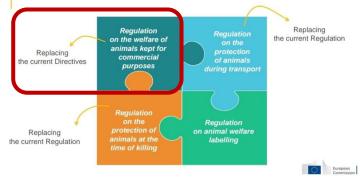
-						
1,000 heads	Total	2024:23 %-change	Sows	2024:23 %-change		
Spain	32,608	-3.7	2,771	1.7		
Germany	21,174	1.1	1,414	1.4		
France	11,802	-2.8	848	-3.5		
Denmark	11,259	2.3	1,142	1.7		
Netherlands	10,474	-3.7	853	-3.4		
Poland	9,132	-3.2	683	15.6		
Italy	8,062	-3.6	612	-0.8		
Belgium	5,373	-0.8	350	-1.1		
Romania	3,020	0.5	227	1.3		
Hungary	2,745	7.2	242	4.3		
Austria	2,521	-2.0	208	-1.9		
Irland	1,680	1.1	152	4.8		
Sweden	1,334	5.4	116	9.4		
EU (13)	121,184	-1.6	9,618	1.4		

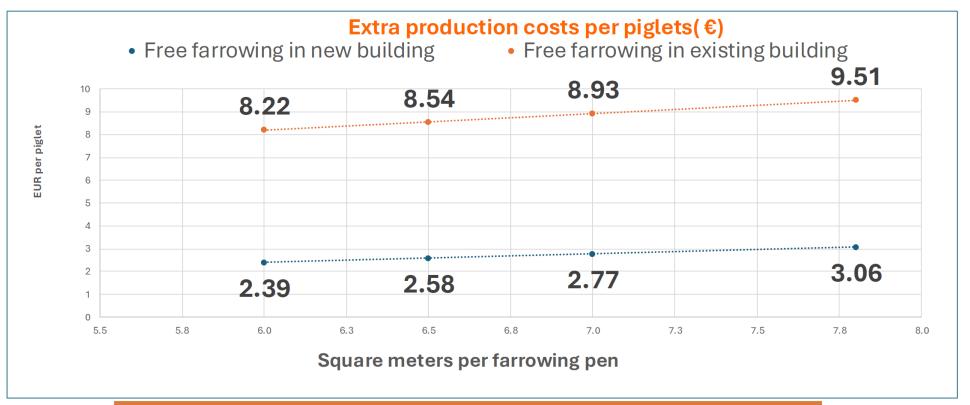
EU SWINE CENSUS EVOLUTION


Development in Pig Population 2024:2019 (%-change compared to the same census 5 years earlier)



Source: Eurostat




- 1. No stalls in weaned sows (6m²)
- 2. Gestation/control in sows (groups at 2,25m²)
- 3. Farrowing $(7.8 \text{m}^2 -> 4.3 \text{m}^2 \text{ to } 6.3 \text{m}^2 \text{ for the sow})$
- 4. Weaning age 28 days
- 5. 20 gr straw/pig/day
- 6. Teeth brush
- 7. Immunocastration-> Surgical castration
- 8. Tail cutting -> Fattening pigs (110Kg)-> 1,17m²
- 9. Complete removal of slats in fatteners

1. ECONOMIC IMPACT OF FREE FARROWING

2. ECONOMIC IMPACT OF EXTRA SPACE IN EU SWINE PROD

Replacing the current Directives	Regulation on the welfare of animals kept for commercial purposes	Regulation on the protection of animals during transport	Replacing the current Regulatio
Replacing the current Regulation	Regulation on the protection of animals at the time of killing	Regulation on animal welfare labelling	

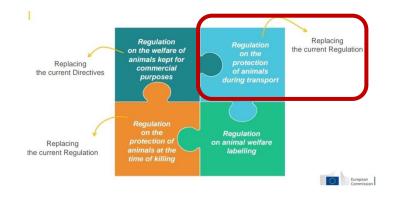
				the current Regulation
ADITIONAL SPACE PER FATTENING PIG(m²)	+0,1	+0,2	+0,3	+0,4
Total cost (€Million)	339	677	1016	1355
Extra investment to keep the same production level (€Million)	4.076	8.152	12.228	16.303
EU production reduction(2021)	-13%	-22%	-30%	-36%
New production level(Million pigs/year)	218	194	175	159
Level of self-sufficiency in EU (126 2021)	110	98	88	80
Extra cost per Slaughtered pig (€)	1,36	2,71	4.07	5,43

Economic impact of policy options in impact assessment from E&Y

1. TRAVELLING TIME

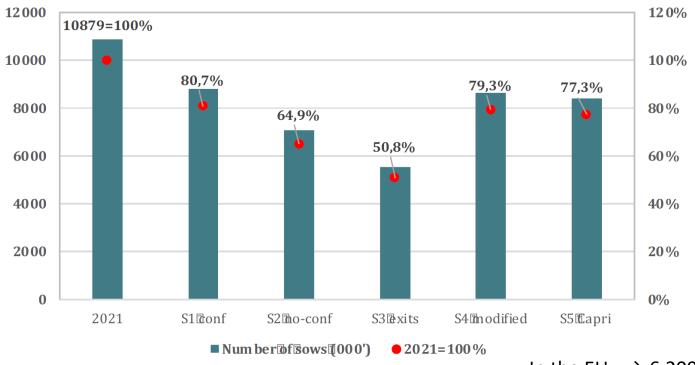
- 1. To slaughterhouse ->9 h
- 2. For live animals 21h +24 h stop

2. TEMPERATURE

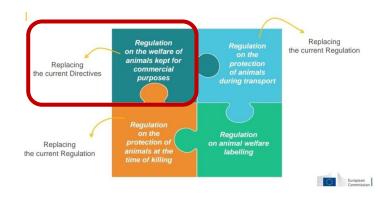

- 1. Forbidden below -5° C
- 2. 25°C 30°C max 9h between 10:00-21:00
- 3. >30°C only night trips between 21:00-10:00

3. DENSITY

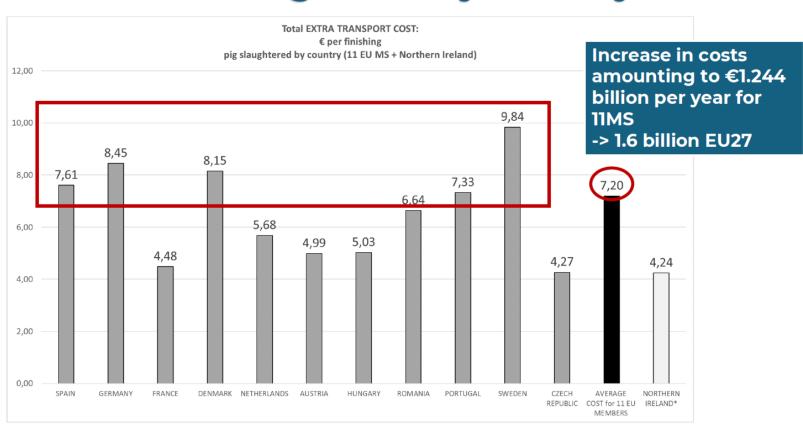
1. $0.58\text{m}^2/100 \text{ Kg pig (Nowadays } 0.43\text{m}^2)$

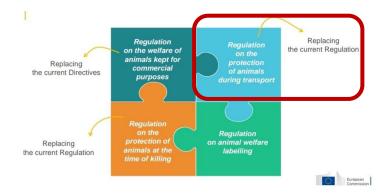

4. LIMITATION FOR NON-WEANED ANIMALS

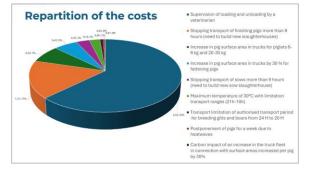
1. No under 21d

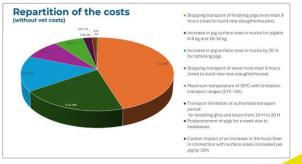


3. ECONOMIC IMPACT OF EXTRA SPACE IN FARROWING CRATES 5,5m²->7m²

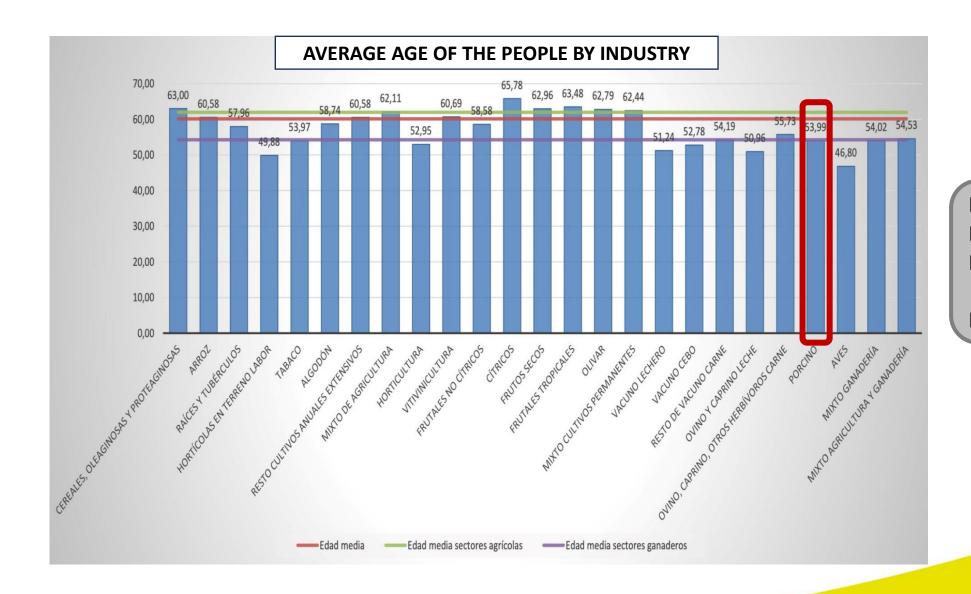



In the EU → 6.200 million €
In Spain → 1.700 million €

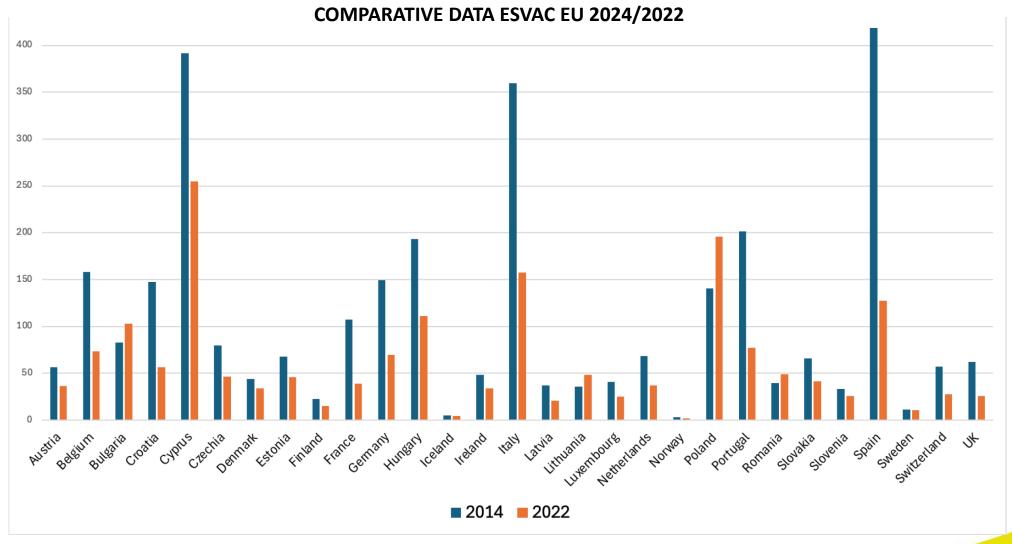




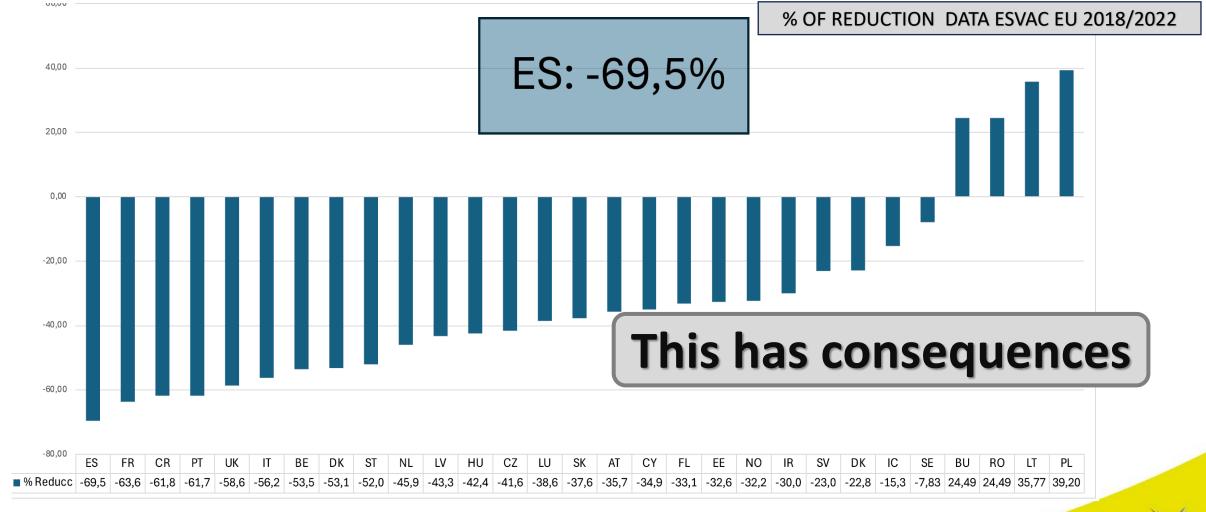
Estimate of average cost by country



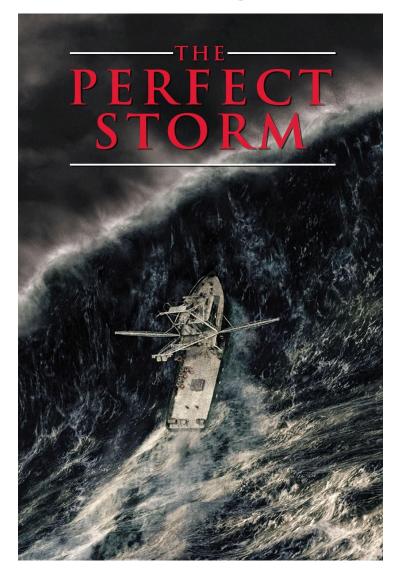
People

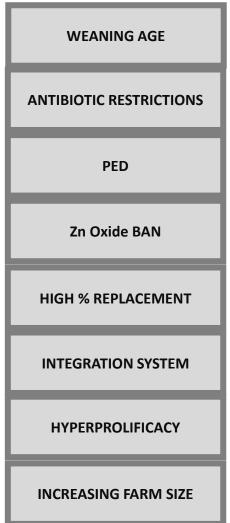


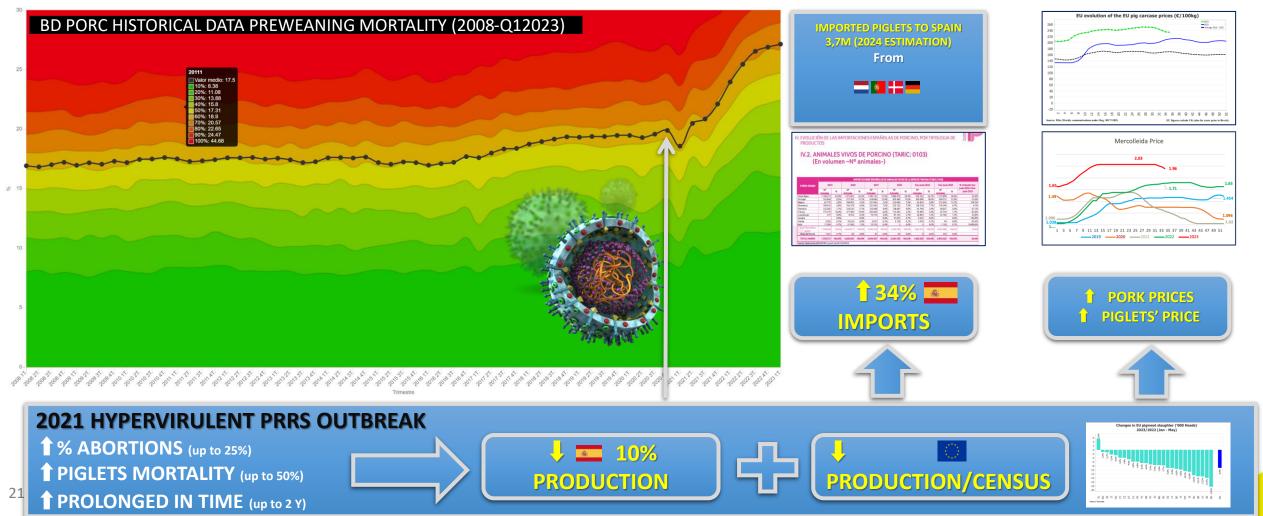
NO REPLACEMENT NOT TRAINED NO INTEREST


BIG ISSUE

Antibiotic reduction




Antibiotic reduction



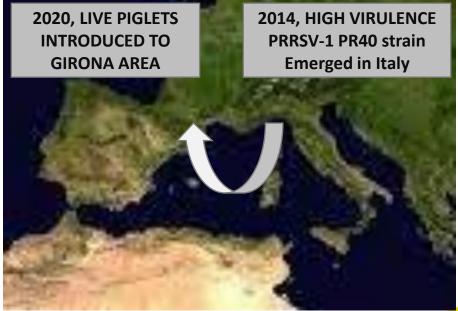
PRRS ROSALIA

WHO IS ROSALIA??

HIGH VIRULENT PRRSV-1 strain.

In some cases, it is considered even worse than highly pathogenic PRRSV-2 strains

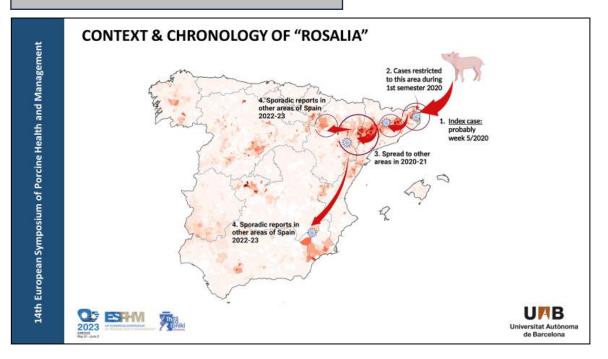
Reassortant (Italy + Korea + Spain + Unknown genes).

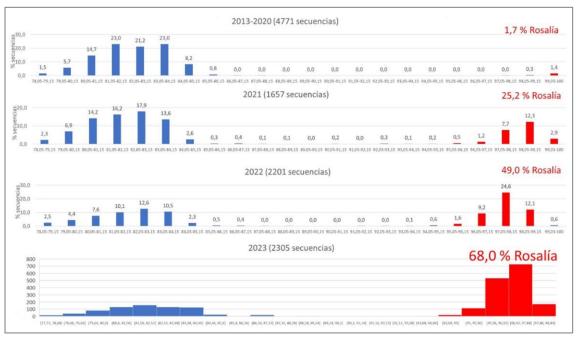

Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

Phenotypic characterization of a highly pathogenic Italian porcine reproductive and respiratory syndrome virus (PRRSV) type 1 subtype 1 isolate in experimentally infected pigs


Elena Canelli^{a,*}, Alessia Catella^a, Paolo Borghetti^a, Luca Ferrari^a, Giulia Ogno^a, Elena De Angelis^a, Attilio Corradi^a, Benedetta Passeri^a, Valeria Bertani^a, Giampietro Sandri^b, Paolo Bonilauri^c, Frederick C. Leung^{d,c}, Stefano Guazzetti^f, Paolo Martelli^a



SPREADING VERY FAST

GSP Lab SEQUENCING RESULTS

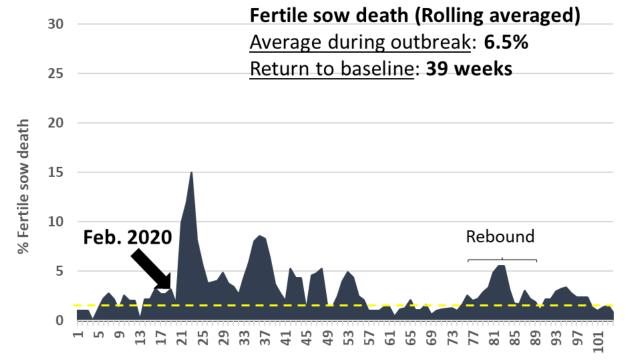
- Higher replication in larger range of tissues = Larger viremia (X6) / higher viral loads (X1000) / Lower infective dose
- New strain = no previous immunity = epidemic outbreaks = Higher transmission rate between animals and farms = Higher incidence
- Higher variation due to mutation (genetic drift) annual nucleotide substitution rate X10:
- High reassortment: High number of animals affected during longer time
- HIGH VARIABILITY IN RELATION TO TIME

- Airborne transmission: Manure in fields + airborne??
 - i.e.: Large Company, 25Ksow farms.
 - From 25k, only 2 remain free from Rosalia, both with filtered air...
 - "BUNKER" EFFECT???
- Semen, Fomites, Pigs + other animal vectors...
- Equipment shared between farms (maily growers / sometimes nurseries...)
 Attention to vaccination teams: Same vaccination equipment & syringes between farms...
- Corpse containers
- Commercial trucks moving piglets

LONG TRIPS sometimes + FREQUENCY (i.e. 2/week in large farms) + HIGH NUMBER OF ANIMALS (i.e. 1800 weaners in a 3 flat truck)

Not too many companies have proper facilities to clean trucks (5000 l water + 1 hour time to clean in adequate facilities)

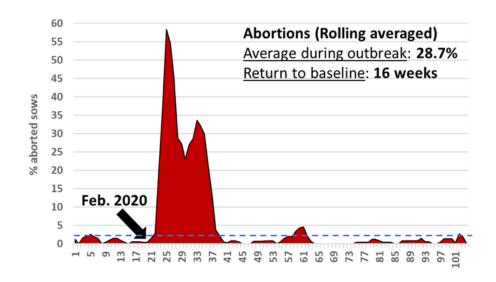
CLINICAL SIGNS AND PRODUCTIVE IMPACT



SOWS:

- Fever, inappetence, laying down, respiratory signs, death.
- Blue ears and mammary glands in some cases.

CLINICAL SIGNS AND PRODUCTIVE IMPACT



SOWS:

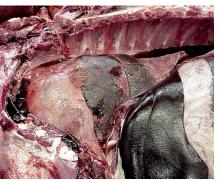
- Fever, inappetence, laying down, respiratory signs, death.
- Blue ears and mammary glands in some cases.

Weeks

On average, 18% of the
annual
production of
weaned pigs
lost during the
outbreak

CLINICAL SIGNS AND PRODUCTIVE IMPACT

SOWS										
	Situ	ation 1 ((S1)	Situ	ation 2 (S2)		S1	S2	Diff.
Per cicle:	%	Days	NPD	%	Days	NPD	Litters/sow/year	2,23	2,30	
Wean to 1rst service interv	/al		7,5			7,5	Piglets weaned / farrow	10,50	12,62	
Repetitions	9,0%	35	3,2	9,0%	35	3,2	Production	23,4	29,1	7,8
Abortions	7,5%	80	6,0	2,0%	90	1,8	Gestation Feed (kg/day)	2,4	2,4	
Gest. sows slaughtered	3,0%	72	2,2	3,0%	72	2,2	Lactation Feed (kg/day)	6,7	6,7	
Gestation sows died	6,0%	45	2,7	2,0%	90	1,8	Feed Sow/year	1.154	1.163	
Total			21,5			16,4	Feed Price (€/T)	327	327	
Days of Gestation			116			116	Gilt cost at first service	253	253	
Days of Lactation Piglet			23			23	Slaughtered sows price	163	163	
Days of Lactation Sow			26			26	% Reposition	54%	54%	
NPD / year			48			38	Sow Cost per year	940	902	
	0,134						Feed	378	380	-0,1
							Accomod. and Manag.	366	366	
	SIP aver	age		SIP			Reposition	72	58	0,5
			_				Treatment			
	Clean:						Medicines	100,0	74,0	0,9
	Sows			F_1			Service	24,0	24,0	
							Weaned piglet cost6,3kg	40,1	31,0	9,1
	Nursery			F_2			Non productive days Cost	2,6	2,5	
	Finishin	g		F_3						



CLINICAL SIGNS AND PRODUCTIVE IMPACT

NURSERY:

- High fever, lying down, severe coughing, and respiratory signs.
- Interstitial pneumonia: Severe and persistent lung lesions
 - (5-6 weeks after infection still lesions detected).
- Conjunctivitis, swollen eyes in some cases.
- Secondary infections: Polyserositis.
- Multifocal petechia + haemorrhages

IMMUNE SYSTEM COMPROMISED:

- Severe lymphopenia
- Exacerbation of other diseases
- Influenza (UAB study much higher prevalence, flu new outbreaks match mortality peaks).
- Vaccination failure
- PCV2, mhyo, app...

CLINICAL SIGNS AND PRODUCTIVE IMPACT

IMPACT Average daily weight gain between weaning and Average quarterly mortality Porcine Health and Management 10 weeks of age 60,00% Peak = 56% 450 50,00% Average daily weight gains 400 affected for more than 1 year 40,00% 4 trimestres with 350 mortalities above 10% 30,00% 300 250 20,00% 200 10,00% 150 0,00% 100 S AND THE PROPERTY AND THE THE PROPERTY AND THE PROPERTY 14th European Symposium of Feed conversion index 4,500 4,000 Surviving weaners were very poor doers 3,500 4 trimesters with feed 3,000 conversion index 2,500 above normal 2,000 1,000 The control to the co UAB Universitat Autònoma de Barcelona

CLINICAL SIGNS AND PRODUCTIVE IMPACT

NURSERY			€/piglet
	S1	S2	Diff.
Piglet IN Cost 6,3kg	50,1	32,6	
Weight IN	6,3	6,3	
Weight OUT	18,0	18,0	
Economic Growth (g/day)	160	270	
Technical Growth (g/day)	220	291	1,3
Economic accomodation days	63,7	42,4	
Economic Feed conversion	2,20	1,58	
Technical Feed convertion	1,70	1,50	1,3
Feed per piglet (kg)	22,4	18,1	
Mortality	25,0%	5,0%	11,0
Weight of the dead animals (kg)	12	12	
Medicines	2,5	1,5	0,6
Treatment (€/piglet)			

Piglet Cost18kg	71,1	48,1	23,0
Feed	12,3	9,9	
Hosting and Management	6,1	4,1	
Medicines	2,5	1,5	
Treatment			
_			
Fconomic return			

Mortality - Nursery		
% Regular mortality	25,0%	5,0%
Weight (kg)	12	12

FINISHING		€/pig	
	S1	S2	Diff.
Piglet IN Cost 18kg	87,4	50,0	
Weight IN	18,0	18,0	
Weight OUT	114,0	114,0	
Economic Growth (g/day)	703	676	
Technical Growth (g/day)	972	709	-4,0
Economic accomodation days	130,7	140,9	
Economic Feed conversion	2,85	2,40	
Technical Feed convertion	2,55	2,35	5,9
Feed per pig (kg)	261,8	228,7	
Mortality	23,0%	4,0%	21,3
Weight of the dead animals (kg)	55	55	
Medicines	2,7	1,7	0,6
Tratamiento (€/cerdo)			

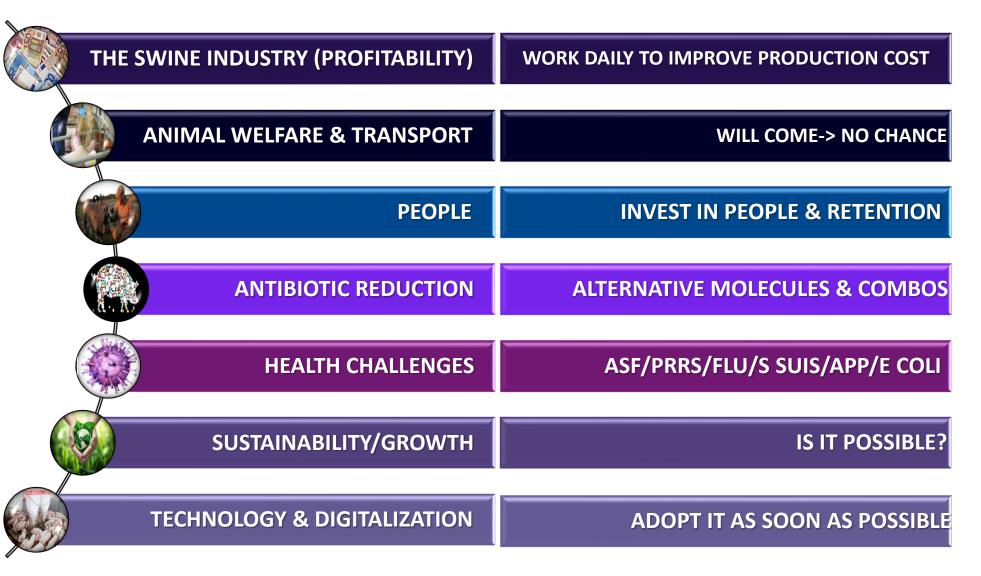
Pig Cost114kg	188,2	140,3	47,9
Feed	83,8	73,2	
Hosting and Management	14,3	15,4	
Medicines	2,7	1,7	
Treatment			
Cost (€/kg)	1,65	1,23	
Economic return			
Total Eco. Return			
Mortality - Finishing			
% Regular mortality	23,0%	4,0%	
Weight (kg)	55	55	

FOR EVERY 1000 SOWS, **WE LOSE** 1.5€M

Cuarantine Quarantine Adaptation Control gestation (crates) Confirmed Gestation (pens) Confirmed Gestation (crates) Confirmed Gestation (crates) Circulation between ages and phases Rosalia: Faster replication / transmission / higher virulence

EdadEd							FINIS	HERS							

REALITIVELY "EASY" TO ACHIEVE "ALMOST" NEGATIVE PIGLETS AT WEANING THE BIG PROBLEM IS ROSALIA CIRCULATION IN NURSERIES:
7-10 days Incubation period, Clinical signs start 2-3 weeks after weaning


Conclusion 1

Rosalia totally changed the rules of production in Spain

- Change in production mentally (volume vs. health and piglet quality).
- Continuous production flows no longer viable
 - Key point is AI-AO in nursery
- Batch management transformation
 - >1 Week is a very helpful tool, no matter of the farm size
 - 3-5 weeks batch management is a trend
- Increase biosecurity, plan eradication programs
- Dramatic increase of the bacterial problems
 - S suis especially 2,9
 - APP with a big increase of new serotypes 9
 - Coinfections with other viral diseases like swine influenza
- Still big problems with E. coli
 - Ban of zinc oxide transformed the nutrition in the nurseries
 - Feed additives are proliferating
 - Organic acids, essential oils & other and combinations are the future

Conclusions 2

THANK YOU!

