

Sow Resilience

the Herd's Foundation

Merideth Parke BVSc

Global Application Manager Swine

Sow Resilience Leads Herd Productivity

Resilience – the ability to successfully adapt to stressors, maintaining well-being and performance in the face of challenges

A resilient sow herd is crucial for achieving sow longevity, and total herd productivity in the long term.

A resilient sow is the end product of – • Genetics → HERD • Health Healthy, efficient PROFITABILITY Nutrition high performing → REDUCED • Husbandry progeny **ANTIBIOTICS** Management Environment

Sow Resilience and Herd Productivity

- 1. Understanding Herd Performance
 - Utilization of herd data
- 2. Sow Longevity
 - Mortality and removals
 - Gilt selection and management
- 3. Sow Herd Resilience
 - Health & nutrition
 - Husbandry, management, environment

Understanding herd performance

Preventive Veterinary Medicine

journal homepage: www.elsevier.com/locate/prevetmed

Whole-herd risk factors associated with wean-to-finish mortality under the conditions of a Midwestern USA swine production system

Edison S. Magalhães^a, Jeffrey J. Zimmerman^a, Pete Thomas^c, Cesar A.A. Moura^c, Giovani Trevisan^a, Derald J. Holtkamp^a, Chong Wang^{a,b}, Christopher Rademacher^a, Gustavo S. Silva^a, Daniel C.L. Linhares^{a,*}

Flow diagram of 1,316 cohorts marketed from July 2018 to June 2019 by production phase.

Production Phase	Framework	Data collected	Production Phase	Framework	Data collected		
Sow Farms	A. Insemination (rates at time of weaning)	Service repeat rate Abortion rate Farrowing rate Total born	Growing Sites	E. Sites 1 and 2 (growing)	Stocking type Days empty before stocking Average weight in Number of pigs in		
	B. Farrowing (data at the time of	Birth loss (stillborn and mummles) Born alive Parity at farrow		F. Sites 3 (finishing)	Average weight out Number pigs out Wean-to-finish mortality		
	Gestation length days before weaning) Gestation length Capacity utilization (farrowing room) Lactation Length		Plus additional parameters – Sow farm Structure –				
	C. Weaning	Pigs weaned/sow Piglet wean age Pre-weaning mortality Sow death rate Non-productive days	 Implementation of air filters (Y/N) Season – Season of the year at weaning Health (Pathogens) Sows and Grow outs – negative, endemic, epidemic 				
	D. Sow herd performance	Pigs weaned/mated female/year Litters/female/year Herd parity (including gilts) Mated inventory Sow parity at removal from herd			PARTNERS O PROGRESS		

Whole herd productivity parameters included in risk management analysis

Production Phase	Framework	Data collected	Production Phase	Framework	Data collected	
Sow Farms	A. Insemination (rates at time of weaning)	Service repeat rate Abortion rate Farrowing rate Total born	Growing Sites	E. Sites 1 and 2 (growing)	Stocking type Days empty before stocking Average weight in Number of pigs in	
	Birth loss (stillbo B. Farrowing (data at the time of farrowing i.e. 21 days before weaning) Born alive Parity at farrow Gestation length Capacity utilization room) Lactation Length	Birth loss (stillborn and mummles) Born alive Parity at farrow		F. Sites 3 (finishing)	Average weight out Number pigs out Wean-to-finish mortality	
		Gestation length Capacity utilization (farrowing room) Lactation Length	Plus additional parameters – Sow farm Structure –			
	C. Weaning	Pigs weaned/sow Piglet wean age Pre-weaning mortality Sow death rate	 Implementation of air filters (Y/N) Season – Season of the year at weaning Health pathogens - Sows and Grow outs 			
	D. Sow herd Pigs weaned/mated female/vear		The final multivariable model consisted of 13 risk factors and accounted for 68.2% of the variability of W2F mortality PARTNERS @ PROGRESS			
	performance Litters/female/year Herd parity (including gilts) Mated inventory Sow parity at removal from herd					

Whole herd productivity parameters included in risk management analysis

Understanding Herd Performance | Conclusions

Conclusions

- Sow farm health and performance linked to downstream W2F mortality
 - High sow farm productivity → low W2F mortality
 - High sow farm health status → low W2F mortality
 - Significant differences seen in W2F mortality for
 - Pre-weaning mortality, weaning age, farrowing rate, abortion rate, total born, birth loss, repeat service rate, parity at farrowing, gestation length
 - Season at weaning
 - PRRS and Mycoplasma hyopneumoniae epidemic versus negative status

Conclusion – Aggregating information from breeding to market identified the major risk factors associated with W2F mortality, demonstrating the value of whole herd data collection and analysis

Sow Longevity

Influencers and Mitigation

Sow Longevity

Sow Loss = Mortality & Removals

- Sow loss
 - Impacts total herd performance
- Total sow loss =
 - + Active culling of sows
 - Reason for cull is clear
 - + Mortalities
 - = Unexpected death of sows
- Reducing sow mortalities
 - Not simple
 - No one solution
 - Strategy the same
 - Investigate to determine cause
 - Evaluate detailed health and breeding history

• Sow mortality continues to increase across pig-raising regions (incls US, Canada, AU, PH)

Sow mortality: 66.2% increase between 2012 and 2021

(Eckberg, 2022)

Relative frequency of removal reasons among sows that died, by year

Disease/Health

Intestinal

Locomotion

Other

Performance

Reproduction

(adapted from Kikuti et al., 2022)

ew **nutrition**

[DH2] (Adapted from Marco, 2024)

Sow Longevity

Gilt Selection & Management Influences Sow Longevity

- Gilt selection (basic criteria)
 - Physical structure and conformation incl. leg structure and hoof integrity
 - Weight
 - Height
- Gilt selection (additional criteria)
 - Age at first estrus
 - Age at first mating
 - Body weight at first mating
 - ADG up to time of first mating

Sow Longevity

Gilt Selection & Management Influences Sow Longevity

- 1. Age at first estrus
- Link between early sexual maturity and sow lifetime productivity
 - Sows culled parity 0 or 1
 - Exhibited first estrus at 204.4±0.7 days of age
 - Sows culled at parity ≥ 5
 - Exhibited first estrus at 198.9±2.1 days of age (p=0.015)
- 2. Age at first breeding
- Gilts > 225 days of age are likely overweight
- Gilts bred > 240 days show (vs Gilts bred 200-225 days of age)
 - Litter size decrease in second parity
 - Longer wean-to-service interval
 - Shorter production life overall

< 195 days

200-225 days

Sow Longevity *Gilt Selection & Management Influences Sow Longevity*

- 3. Body weight at first mating
- Supports ideal weight at farrowing and lifetime maintenance
 - ADG 600-800 g to reach target weight between 200 and 225 days
 - Gilts bred 150-160 kg (vs 136-140kg)
 - Larger total born (TB) second litter (p=0.050)
 - Gilts with ADG 601-650 g (vs 551-600 g)
 - Larger TB second litter (p=0.012)
- 4. Number of estrus cycles prior to first mating
- Accurately track estrus and breed on the second estrus
 - Delaying breeding to second estrus
 - Positive effect on litter size
 - Delay breeding to the third estrus
 - ONLY to meet minimum weight

Relative frequency of removal reasons among sows that died, by year

Disease/Health

Intestinal

Locomotion

Other

Performance

Reproduction

(adapted from Kikuti et al., 2022)

Research in Veterinary Science 139 (2021) 127-132

Causes of spontaneous sow deaths in the farrowing units of 10 Danish sow herds

```
H. Kongsted <sup>a,*</sup>, S. Haugegaard <sup>b</sup>, A.S. Juel <sup>b</sup>, C.M. Salomonsen <sup>b</sup>, T.K. Jensen <sup>c</sup>
```


- 10 Danish sow herds shared mortality data for 7-15 months
 - 126 sows died
 - 24% died within 5 days of farrowing
 - 53/126 sows were necropsied
 - Liver lobe torsion 22/53 (42%) -
 - Unknown cause (less often in first 5 days)
 - Endotoxemic shock
 - Due to retained fetuses 7/53 (13%)
 - Died within 3 days of farrowing
 - Less prevalent causes of death
 - Intestinal torsions (8%)
 - Cardiovascular collapse (8%)
 - Rupture of blood vessels (uterine & non-ut. 8%)
 - Gastric ulcers (4%)
 - Sepsis (2%)
 - Liver abscess (2%)
 - Acute introduction of *M. hyo* to 1 (naïve) herd
 - Acute increase in sow mortality (7/53 = 13%)

Sow Resilience

Influencers and Mitigation

Sow Resilience | Influencers Husbandry, Management, Environment

- Husbandry, management, environment
 - Husbandry
 - Animal handling
 - Management
 - Gestational group housing
 - Farrowing and lactation environment
 - Physical environment
 - Heat stress

Sow Resilience | Husbandry

Animal Handling

Applied Animal Behaviour Science Volume 17, Issues 3–4, June 1987, Pages 245-252

The influence of inconsistent handling by humans on the behaviour, growth and corticosteroids of young pigs

P.H. Hemsworth, J.L. Barnett, C. Hansen

Methodology

- 32 young female pigs housed in individual pens 7-13 weeks of age
- 4 handling treatments -
 - 3 treatments were imposed for 3 min each, 3 times per week
 - 1. Pleasant stroking the pig whenever it approached the experimenter
 - 2. Unpleasant forcing the pig away whenever it approached
 - 3. Inconsistent combination of unpleasant and pleasant treatments (ratio of 1:5)
 - 4. Minimal handling minimal contact with humans during this 6-week period
- Data collected behaviour observations, growth and free corticosol concentration

Sow Resilience | Husbandry

Animal Handling

Evaluating the impact of animal handling on grower pig performance

Table 2: Influence of handling on growth performance and corticosteroid concentration of female grower pigs from 7-13 weeks of age (Hemsworth et al., 1987)

	Unpleasant	Pleasant	Inconsistent	Minimal	
ADG (g)	404ª	455 ^b	420 ^{ab}	4.58 ^b	
FCR (F:G)	2.62 ^b	2.46ª	2.56 ^b	2.42ª	
Corticosteroid	2.5ª	1.6 ^b	2.6ª	1.7 ^b	
conc (ng/mL)					

*Kicking action staged for photo

Article

A Comparison of the Behavior, Physiology, and Offspring Resilience of Gestating Sows When Raised in a Group Housing System and Individual Stalls

Xin Liu^{1,†}, Pengkang Song^{1,2,†}, Hua Yan¹, Longchao Zhang¹, Ligang Wang¹, Fuping Zhao¹, Hongmei Gao¹, Xinhua Hou¹, Lijun Shi¹, Bugao Li^{2,*} and Lixian Wang^{1,*}

Methodology - Sows

- 60 large white P2 sows
- Pregnancy confirmed @ 28 days then divided into 2 groups
 - Individual stalls (IS) 2.4m x 0.65m (1.56m²/head)
 - Group housing (GS) 10.5m x 14.4m (5.04m²/head) with ESF
- Behaviour observations via video 9am-5pm on each of day 40, 70 and 100 of gestation
 - Number of times behaviours occurred in each 10min increment
- Temperature maintained approx. 20°C
- Blood samples collected day 41, 71, 101
 - Tested ACTH, adrenaline and cortisol

Article

A Comparison of the Behavior, Physiology, and Offspring Resilience of Gestating Sows When Raised in a Group Housing System and Individual Stalls

Xin Liu^{1,†}, Pengkang Song^{1,2,†}, Hua Yan¹, Longchao Zhang¹, Ligang Wang¹, Fuping Zhao¹, Hongmei Gao¹, Xinhua Hou¹, Lijun Shi¹, Bugao Li^{2,*} and Lixian Wang^{1,*}

Methodology - Piglets

- 20 piglets randomly selected from 10 sows per treatment group
- 6kg healthy 21day old piglets
- Piglets from each sow group randomly assigned to LPS or saline injection groups

MDP

- Blood collected 6 hours post-injection for cortisol
- Ear temperature measured hourly after injection for 6 hours

Results - Sows

- GS sows
 - more exploratory behavior, less vacuum chewing, and less sitting behavior (p < 0.05)
- IS sows showed higher stress hormone levels than GS sows
 - 41 days gestation → concentration of the adrenocorticotropic hormone (ACTH) and adrenaline was significantly higher (p < 0.01)
 - 71 days gestation \rightarrow adrenaline level remained significantly higher (p < 0.01)

Results - Piglets

- LPS test performed in weaners from GS (PG) vs IS (PS) sows
 - PG \rightarrow shorter period of high temperature and faster return to normal (p < 0.05)
 - PG \rightarrow lower stress hormone levels than PS (p < 0.01)

GS were able to carry out more natural behaviors and showed lower levels of stress, with less stressed and more robust progeny

Sow Resilience | Management *Gestational Group Housing*

- Poorly established groups elevate stress and increase aggressive behaviour
 - ➢Increased leg injuries
 - Higher rates of abortions and returns to service
 - ≻Lower milk yield
 - ➢ Reduced piglet growth
 - Compromised immune function
 - ≻..... etc

Classifying maternal resilience for improved sow welfare, offspring performance

Classifying maternal resilience for improved sow welfare, offspring performance - National Hog Farmer September/October 2024 (turtl.co)

Objective

• To evaluate growth of piglets from social stress resilient (SR) vs vulnerable (SV) sows

Trial methodology

- 64 sows (P1 and P2) mated and confirmed pregnant at 22-24 days gestation
- Moved to free stall at 25 days gestation
 - 8 sows per pen in individual stalls until 30 days gestation
- Mixed at 30 days gestation
 - Saliva collected individually @ -1, 0, +1, +2, +3, +7 days post mixing
- Sow selection
 - 9 stress resilient sows (baseline, acute response, recovery to baseline by 7 days post-mixing)
 - 9 stress vulnerable sows (moderate acute response but cortisol continues to elevate = chronic stress)
- Performance of progeny from SR and SV sows compared

Results

- No statistical difference in TB or BA between SR and SV sows
 - 1 SV sow removed due to layover of most piglets
- 158 piglets followed to weaning
- Birth weight @ processing
- Weaning weight @ av 26d (1 day pre-wean)

Table 1: Influence of stress resilience on performance (Luttmann and Ernst, 2024)

Trait	SR	SV	p-value
Birth weight (kg)	1.350 ± 0.039	1.246 ± 0.041	0.083
Wean weight(kg)	6.299 ± 0.185	5.639 ± 0.202	0.033*
Suckling ADG (kg/d)	0.191 ± 0.005	0.165 ± 0.005	0.004**

Least square means and standard error of stress resilient (SR) and stress vulnerable (SV) for each trait; significance threshold of p<0.05 with

* indicating 0.01<p<0.05, ** indicating 0.001<p<0.01

Conclusion - Sow resilience to stress influences litter performance

frontiers Frontiers in Veterinary Science

A five domains assessment of sow welfare in a novel free farrowing system

Kate Plush*, David Lines, Lauren Staveley, Darryl D'Souza and Robert van Barneveld

SunPork Group, Brisbane, QLD, Australia

https://doi.org/10.3389/fvets.2024.1339947; Maternity Rings – SunPork Group Website

Sow Resilience | Management

Farrowing Confinement

Objective –

• Free farrowing alternative that preserves space whilst giving sows unrestricted movement

Aim –

- To apply the 5 domains model to assess sow welfare, and to evaluate sow and piglet performance, in maternity ring (MR) vs individual crates (FC)
- Suitable for all parity sows
- Safe for staff

Trial Design –

- 88 sows in FC
- 83 sows in MR
- Dimensions of 2 adjacent MR or FC = 2350 x 3650

Data Collection –

Nutrition, health, environment, behaviour and mental state

Sow Resilience | Management

Farrowing Confinement

Results –

Total Feed Intake less in MR

• MR 93.8 +/- 3.06kg vs FC 111.2 +/- 3.13kg P<0.001

MR reduced P2 back fat loss during lactation

• MR 0.0 +/- 0.11 vs FC 1.2 +/- 0.11 P<0.001

All litter performance parameters showed no sig. differences

Fewer pain-related behaviours during farrowing in MR sows

• MR 0.5 +/- 0.29 vs FC 3.3 +/- 2.12 P = 0.019

Decreased proportion MR sows had facial injuries post farrow

• MR 10% vs FC 67% P<0.001

MR reduced udder damage at weaning

• MR 10% vs FC 70% P<0.001

Fewer piglet medications in MR litters

• MR 30% vs FC 51% P=0.008

Increased sow contact events with piglets after processing

• MR 13.5 +/- 2.55 vs FC 6.9 +/- 1.26 P=0.016

MR sows displayed reduced startle to aversive noise at d18

• MR 0.7 +/- 0.16 vs FC 2.8 +/- 0.35 P<0.001

Sow Resilience | Environment

Heat Stress Performance Impact

- Sow feed intake
 - Each 1°C increase between 25-27°C and 50-60% humidity
 → -214g/d²
 - Thermoneutral (18-24°C) vs hot (27-32°C) → -33%³
- Viability of piglets at birth
 - Respiration rate >50 bpm → risk to foetus' and pregnancy
- Milk supply
 - Each 1°C above sow thermoneutral zone → -184g/d²
 - Thermoneutral (18-24°C) vs hot (27-32°C) → -22.8%³
- Suckling piglet performance
 - Farrowing rooms at 18°C vs 29°C → -1.32kg @ 24d wean
 - Thermoneutral (18-24°C) vs hot (27-32°C) → -17.4% ADG³
- Future breeding potential impact
 - Increase culls (e.g. udder damage)
 - Reduced conception and farrowing rates
 - Extended lactations +/- nurse sows

Sow Resilience | Environment Heat Stress – Farrowing Room Position

Farrowing room position impacts severity of heat stress and sow performance

National Hog Farmer 2022 08 04 Mark Knauer, Suzanne Leonard, North Carolina State University

Sow Resilience | Environment Heat Stress – Farrowing Room Position

Farrowing room position impacts severity of heat stress and sow performance

Table 1. Impact of sow location (within the farrow	owing room) on reproduction, subsequent reproduction and sow body condition		North Carolina State University			
	Zone 1 ⁺	Zone 2	Zone 3	Zone 4	SE	p-value
Reproduction						
Stillborns	.53	.51	.55	.54	.055	.91
% stillborns	3.6	3.6	3.9	4.0	.45	.74
Number weaned	11.92	11.76	11.64	11.61	.09	<.01
Piglet survival, %	84.4	83.9	82.2	82.2	.82	<.01
Litter weaning weight, Ib	160.1	155.1	149.7	147.3	2.0	<.01
Subsequent reproduction						
% of sows conceiving by 7 days after weaning	74.5	72.5	68.5	66.8	3.2	.01
Subsequent total number born	14.04	13.40	13.72	13.31	.25	.02
Subsequent number born alive	13.37	12.74	13.08	12.75	.245	.03
Subsequent stillborns	.60	.65	.59	.59	.076	.85
Sow body condition						
Sow caliper [®] prefarrow	14.09	14.11	13.99	13.99	.13	.67
Sow caliper @ weaning	11.95	11.86	11.55	11.57	.15	.01
Sow caliper lactation loss*	-2.10	-2.26	-2.42	-2.40	.12	.04

[†]Zone 1 included the sows at the front of the farrowing room near the inlets letting in cooled air. Zone 4 included sows at the back of the room where air exited the building through fans embedded within the wall. [±]Sow caliper; <12 = "thin", 12 to 15 = "ideal", >15 = fat. *Sow caliper loss - a one-unit change is equivalent to 1/3 of a body condition score change (1 to 5 scale).

National Hog Farmer 2022 08 04 Mark Knauer, Suzanne Leonard, North Carolina State University

Sow Resilience | Environment Heat Stress Mitigation – Cool Pads

- Cooling pads under sows in lactation
 - Feed intake increased¹
 - Respiration rate decreased¹

GRESS

Sow resilience

summary

Sow Resilience Leads Herd Productivity

- Record and evaluate parameters of the production system
 >Quantitative data-based decisions
- Sow longevity
 - Identify sow losses and mitigate known causes
- Manage known stressors across the production system
 - ≻Animal handling
 - ➤ Facilities
 - ➢Environment
- Develop a resilient sow herd
 - ≻Health & Nutrition
 - Husbandry, Management, Environment

Sow Resilience Leads Herd Productivity

