

Looking to the Future of Sustainable Feed Production for Pigs Success Factors in a Concept "Feed 3.0"

Dr. Heinrich Kleine Klausing Managing Director, Deutsche Tiernahrung Cremer, Germany

Importance of sustainable feed production in pig nutrition

Sustainable feed production in Pig Nutrition is crucial for ...

- reducing environmental impact
- ensuring animal health and welfare
- meeting the growing global demand for pork

in an **ethical** and **resource-efficient** manner.

The holistic solution from the customer perspective

The holistic solution from the customer perspective

Today & Tomorrow

NFF

Agenda

Advances in feed processing

- > Insight on hydrothermal processing
- Insight on solid state fermentation

Newest considerations in feed formulation

- Insight on meaning of DCAB in sow feed
- Insight on constipation around farrowing, endotoxins and meaning of fermentable fiber

Newest generation feed additives

- Insight on meaning and evaluation of organic acids
- Take-home message

Key drivers of technical innovation in a Concept "Feed 3.0"

 Integration of future technology in whole chain of pig nutrition Robotics, IoT, real-time monitoring using sensor technology → AI

Application of precision nutrition

Customized diets based on individual needs and digitized data acquisition and processing on farm including real-time cross-linking with feed formulation using AI

- Utilization of sustainable novel ingredients protein-rich byproducts, fiber-rich byproducts, feedstuffs with specific functionalities
- Utilization of novel valorization technologies
 - valorization of e.g. starch-/fiber-rich feed ingredients by hydrothermal processes
 - valorization of e.g. protein-rich feed ingredients by Solid-State Fermentation
 - protection of temperature-sensitive additives / feed specialities by post-pelleting application technology / vacuum-coating

Automation and digitalization

- Automation: Integration of automated systems in feed mills has revolutionized feed processing. Automated batching, mixing, and pelleting systems ensure precision and consistency.
- ✓ **Benefits:** Increased production rates, reduced labor costs, enhanced product quality.
- ✓ Digitalization: Use of IoT and data analytics to monitor and optimize feed production processes.
- Example: Real-time monitoring of feed quality (e.g. NIRS) and machinery performance to prevent downtime and ensure consistent output as well as feed quality.

Advances in feed processing in a Concept "Feed 3.0"

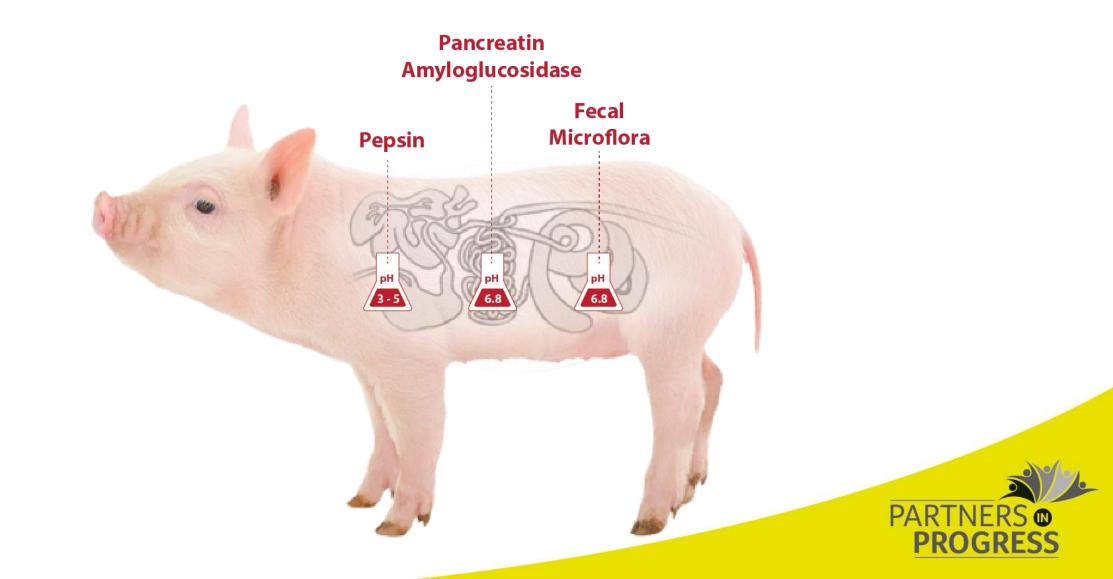
Quality control and safety

- ✓ Implementation of stringent quality control measures to ensure feed safety and consistency.
- ✓ **Nutrients**: **Constant monitoring** using **network technology** such as NIRS
- ✓ ANF: feedstuff-specific definition & monitoring; mycotoxins & other undesirables
- ✓ Hygiene: monitor microbial contamination in the production & product environment and avoid it as much as possible.

Advances in feed processing in a Concept "Feed 3.0"

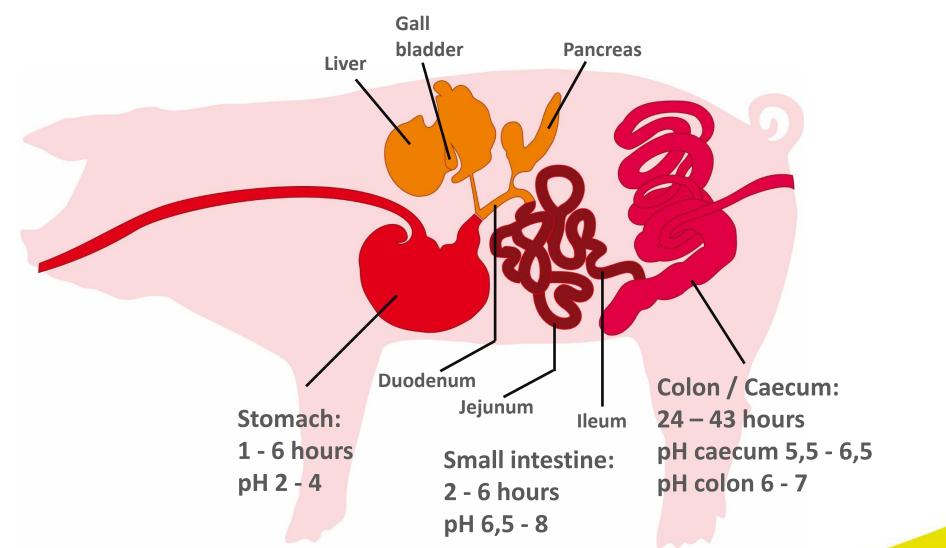
Pelleting

- ✓ Compressing feed ingredients into dense, uniform pellets.
- Advantages: Improved feed intake, reduced feed wastage, and enhanced nutrient density.
- ✓ Recent developments: Use of state-of-the-art pellet mills considering the best possible preservation of particle structure in the pellet.
- ✓ Note: avoid microbial contamination/recontamination! Draw supply air for coolers from hygienically unsuspicious areas or clean (e.g., Hepa filter).


Hydrothermal processing

- ✓ Use of steam (increased moisture), temperature, pressure and shear forces to process feed ingredients, improving their nutritional value and safety.
- ✓ Benefits: Reduction of anti-nutritional factors, improved starch gelatinization, enhanced protein digestibility, sanitization.

pH in the GIT - Key function for intestinal health


Retention time + pH

PART

F

PROGRESS

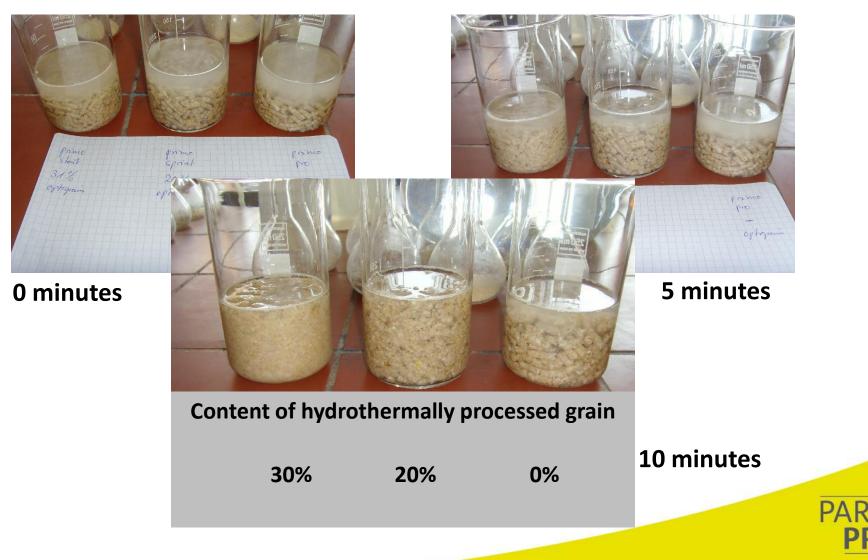
Source: Lærke, HN & Hedemann, MS 2012, 'The digestive system of the pig'. in KE Bach Knudsen, NJ Kjeldsen, HD Poulsen & BB Jensen (eds), *Nutritional physiology of pigs - Online Publication*. Videncenter for Svineproduktion, Foulum.

Hydrothermal processing of grain provides homogeneity

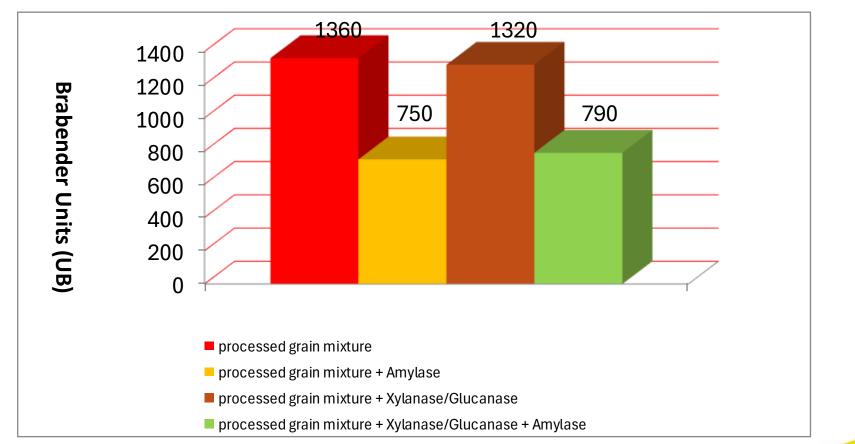
Comparing hydrothermally processed and untreated grain

Barley, wheat, corn

Hydrothermally processed



Hydrothermal processing of grain provides homogeneity



Impact on the dissolution of pellets in water

Hydrothermal processing of grain – Influence on viscosity

Viscosity of hydrothermally processed grain mixture is caused by starch hydrolysis

Hydrothermal processing of grain – Influence on viscosity

Viscosity of hydrothermally processed grain mixture is caused by starch hydrolysis

- Left: 50 g refined grain mixture and 250 g water
- Right: 50 g refined grain mixture and 250 g water plus 3 mg Alpha-Amylase (60 g per MT)

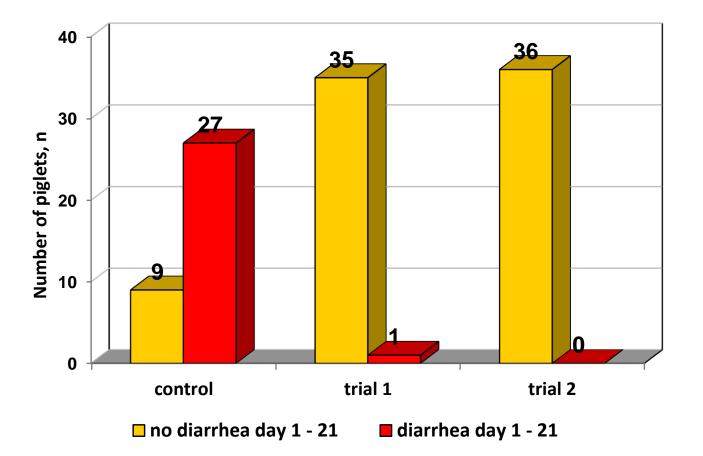
Diet viscosity and its influence on the digestion in the stomach

Impact of feed viscosity on physiological parameters and protein digestion in young monogastric animals

Treatment	Control	Trial	Significance
Viscosity (mPa s)	3.6	21.8	
Retention time of the solid phase in the stomach - Recovery of marker (%)	21.4	25.7	0.18
Protein hydrolysis in stomach (%)	26	34	0.13
Aminopeptidase activity (U/g protein)	359	516	< 0.01
ileal N digestibility (%)	75.2	79.8	0.22
faecal N digestibility (%)	80.3	84.2	0.04

Source: Fledderus et al.: Increasing diet viscosity using carboxymethylcellulose in weaned piglets stimulates protein digestibility; Livestock Science 109 (2007) 89-92

Hydrothermal processing of grain and protein value


Effect of hydrothermal processing on in vitro protein degradability in barley

	Unpro	ocessed	Hydrothermally processed		
Batch	3-hour dig% unprocessed	24-hour dig% unprocessed	3-hour dig% processed	24-hour dig% processed	
1	73,7	90,5	85,8	91,5	
2	79,5	89,1	84,9	91,1	
3	76,7	90,1	81,8	90,4	
4	77,5	90,8	84,3	90,4	
5	77,2	87,4	81,8	90,3	
6	76,0	91,3	81,0	90,0	
Average	76,8	89,9	83,3	90,6	

Piglets – Hydrothermal processing of grain supports gut health

Trial under controlled practical conditions; average weaning age 26 days; 36 piglets per group

Control:	no hydrothermally refined grain
Treatment 1 and 2:	25 % hydrothermally refined grain

Source: Internal project report KK

Fermentation

- Biological process that uses microorganisms (*anaerobic*: bacteria or *aerobic*: fungi, yeast) to convert feed ingredients into better digestible, nutritious forms and to produce beneficial postbiotics like organic acids or specific peptides.
- ✓ Benefits: Enhanced nutrient availability, improved gut health, reduced need for antibiotic application to control dysbiosis symptoms.
- ✓ Recent Trends: Use of Solid-State Fermentation on an industrial scale to refine protein-rich byproducts like soybean meal, rapeseed meal, sunflower meal,

Case study: Soybean meal solid-state fermentation

	fermented bean meal	Fermented with LAB	Hydrolysed with ENZYMES & fermented with LAB
рН	6,50	5,30	4,60 💊
Lactic acid, % in DM	0,05	2,08	5,04 🦊
Protein, % in DM	50,62	54,60	53,54 🦊
Stachyose, % in DM	5,18	4,53	1,47 🔰
Raffinose, % in DM	1,72	0,89	0,18 🖕

Solid state fermentation with Lactobacilli strains (LAB) can:

- 1. Significantly decrease pH value and increase lactic acid concentration
 - → improved palatability & positive impact on gut microbiome in monogastrics
- 2. Reduce antinutritive carbohydrates like stachyose and raffinose in soybean meal
 - \rightarrow positive impact on gut microbiome in monogastric animals \rightarrow improved gut health

Benefits of fermented feed(-stuff) in sows around farrowing

On-farm control of sow feces in different production phases with and w/o fermented feed

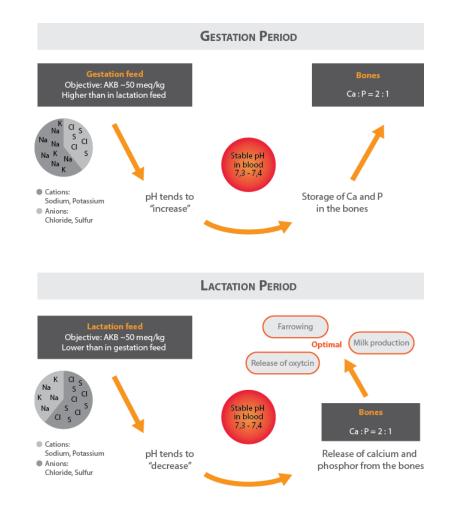
	Opera Ferm			tion 2 nent	Opera Fern		Opera Fern		Feed w	vithout Ferment
	pH feces	Clostr. (cfu/g)	pH feces	Clostr. (cfu/g)	pH feces	Clostr. (cfu/g)	pH feces	Clostr. (cfu/g)	pH feces	Clostridium (cfu/g)
10 weeks gestation	6,5	0	6,9	1.000	-	-	7,0	1.400	6,8-8,3	16.000–48 million
End gestation	6,4	1	6,7	10	6,5	10	7,4	10	6,8-8,2	4.000-64 million
End farrowing	6,8	1	6,6	10	7,2	1300	7,4	520	6,8-8,2	4.000-64 million

Source: Dr. Ferm KfT (2024)

Nutritional Additives

- ✓ Amino Acids: Essential for protein synthesis and overall growth
- Recent Trends: Increased use of synthetic amino acids to balance diets and reduce reliance on protein-rich feed ingredients.
 - ✓ Future influence of EC anti-dumping measures against Chinese companies?
 - ✓ Formulation based on precaecal digestible Amino Acids is a MUST!
- ✓ Vitamins, Trace Elements, Minerals: Critical for metabolic processes and immune function

Low milk production: Spotting the signals!



The metabolism of minerals in sows

That's how the Ca-metabolism works...

Ca and P metabolism of sows in gestation and lactation periods

The metabolism of minerals in sows

dEB = 43,498 x Na + 25,574 x K – 28,206 x Cl

DCAB = 43,5 x Na + 25,6 x K - 28,2 x Cl - 62,4 x S

(KAB = -13 x M+C + 49,9 x Ca - 59 x P + 43,5 x Na + 25,6 x K - 28,2 x Cl + 82,3 x Mg)

gestatio	on diet					
DCAB (r	mEq/kg DM)	RECOMM	ENDATION			
		content 87%	content 100 %	6		
lon	factor	g/kg	g/kg		DCAB 100%	MC
Na	43,5	2,7	3,1		135,0	
K	25,6	6,9	7,9		203,0	
Cl	-28,2	2,6	3,0		-84,3	
S	-62,4	1,9	2,2		-136,3	
					117,5	mEq/kg DM

lactatio	n diet					
DCAB (mEq/kg DM)		RECOMMENDATION				
		content 87%	content 100 %	6		
lon	factor	g/kg	g/kg		DCAB 100%[MC
Na	43,5	2,5	2,9		125,0	
К	25,6	7,3	8,4		214,8	
Cl	-28,2	3,8	4,4		-123,2	
S	-62,4	2,2	2,5		-157,8	
					58,8	mEq/kg DM

Health and performance enhancers – components & additives

- ✓ Gut health: Focus on ingredients that promote a healthy gut microbiome.
 where appropriate → ingredient valorization by hydrothermal processes and / or fermentation.
- ✓ Additives: Probiotics, prebiotics, postbiotics →gut health and nutrient absorption.
- ✓ Immune modulation: Incorporating feed additives that boost the immune system.
- Examples: Phytogenics, immunoglobulins, beta-glucans, nucleotides, with immunomodulatory properties.

Practical example: The challenges of sows around birth

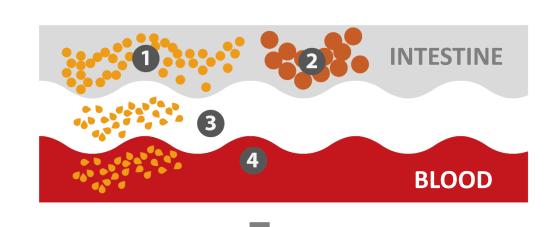
What are the challenges?

Delayed birth, lack of milk

- ightarrow Obvious and subclinical constipation
- ightarrow "release of harmful substances" from gram-negative bacteria in the intestine

(Endotoxins) – MMA!?

Low feed intake


Not enough energy around farrowing

- ightarrow Use of body fat reserves at early stages
- ightarrow Release of harmful substances (toxins) accumulated in body fat
- ightarrow Energy deficiency
- ightarrow Low milk production

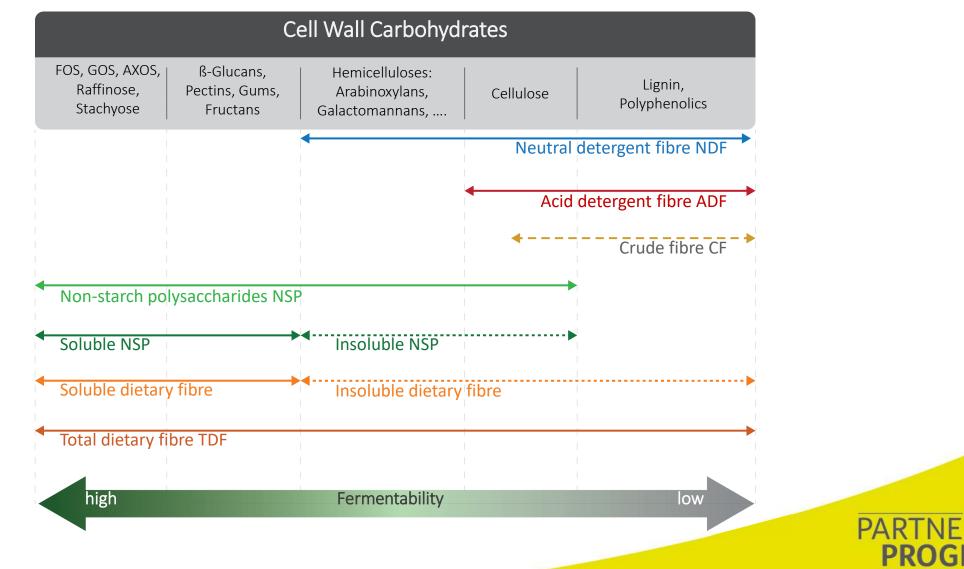
Sows: Challenges around birth - Endotoxins

- Constipation
- Proliferation of *E. coli*
- 3 Decomposition of *E. coli* and release of endotoxins
- Indotoxins pass into the bloodstream

Fever Inflammation of the udder (mastitis) Inhibition <u>of</u> prolactin

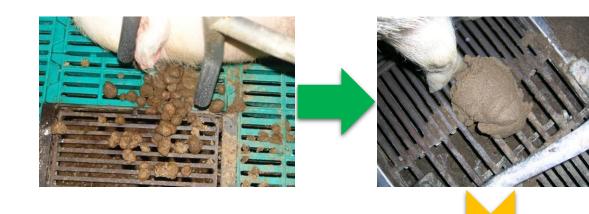
Low milk production (hypogalactia/agalactia)

Constipation leads to the release of endotoxins that pass into the blood. Sows show fever and painful inflammations of the udder.



Source: Nutztierpraxis Schwein (2013)

"Fiber" – "NSP" – "structure carbohydrates"


Classification of plant carbohydrates (modified according to NRC, 2012)

Source: Potthast (2018); Jaworski et al. (2019) in AAF 2019-10-30

Sows: Prevention of constipation

 Do not reduce the amount of feed before parturition significantly

(consistency of stool is the limiting factor) \rightarrow avoid the mobilization of body fat reserves at an early stage

- Lactation feed with adequate fiber level and type (≥ 5 % crude fiber and ≥18% insoluble dietary fiber (fermentable carbohydrates))
- Around farrowing: Use benefits of fermented feed (-stuff) on gut health and shedding of potentially harmful bacteria
- Guarantee adequate quantities of water (particularly important in liquid feeding systems or when flooding the trough in gestation units)

Sustainable Ingredients

- ✓ Alternative Proteins: Incorporation of highly digestible protein sources as partly replacement for third country soybean meal.
- Benefits: Reduced environmental impact, lower land and water use, and sustainable production.
- Example: Single Cell Proteins from fermentation processes using sustainable carbon sources.
- By-products: by-products from oil-milling (rapeseed, sunflower seed) using newest processing technology.
 - → Partly solution for requirements arising from EUDR regulation?

Environmental considerations

- Carbon footprint reduction: Formulating feeds to minimize greenhouse gas emissions and environmental impact.
- Strategies: Using low-emission ingredients; optimization of energy consumption and energy sources in feed production; optimizing feed efficiency.
 - QS-SojaPlus in Germany: branch-wide certification using only soy from sustainable cultivation based on FEFAC Soy Sourcing Guidelines.
 - Climate Platform Meat in Germany: Branch initiative "from farm to fork"!
- ✓ Water use efficiency: Specific selection of processing technic.

Newest generation feed additives in a Concept "Feed 3.0"

- Enzymes → Phytase, carbohydrases, proteases
- Prebiotics → insoluble, highly fermentable fiber source → "symbiosis" with carbohydrases → production of SCFA in distal gut, especially butyric acid
- Probiotics
 Iive micro-organisms conferring health support to the host by intestinal flora balance
- Postbiotics
 A Metabolic products of probiotics with, e.g., influence on the balance
 of the intestinal flora
- Organic acids → formic acid, lactic acid,, MCFA: the right ones in the right dosage
- **Phytogenics** → composition with adapted release along the digestive tract
- ✓ Toxin solution & **detoxification** → endotoxins; mycotoxins

"How to select Organic Acids"

How to evaluate organic acids?

		g/mol	ρΚ Α
Propionic acid	(C ₃ H ₆ O ₂)	74,1	4,90
Butyric acid	(C ₄ H ₈ O ₂)	88,1	4,80
Sorbic acid	$(C_6H_8O_2)$	112,1	4,80
Acetic acid	(C ₂ H ₄ O ₂)	60,0	4,76
Benzoic acid	(C ₇ H ₆ O ₂)	122,1	4,20
Lactic acid	(C ₃ H ₆ O ₃)	<mark>90,1</mark>	<mark>3,87</mark>
<mark>Formic acid</mark>	(CH ₂ O ₂)	<mark>46,0</mark>	<mark>3,75</mark>
<mark>Citric acid</mark>	(C ₆ H ₈ O ₇)	<mark>192,4</mark>	<mark>3,14</mark>

Strong acids:	рКа <i>-</i> 1,74 – 4,5	
Medium acids:	ρΚ Α	4,5 – 9
Weak acids:	ρΚ Α	9,0 – 15,74

pK_A is an acid dissociation constant used to describe the acidity of a particular molecule. **pK**_A values describe the point where the acid is 50% dissociated (i.e. deprotonated).

Take-home message: Key success factors in a Concept "Feed 3.0"

- Integration of advanced technologies
- Automation and digitalization
- Sustainable and alternative ingredients
- Precision nutrition
- Health and welfare enhancements
- Environmental sustainability
- Collaboration and knowledge exchange

THANK YOU!

Questions & Answers

