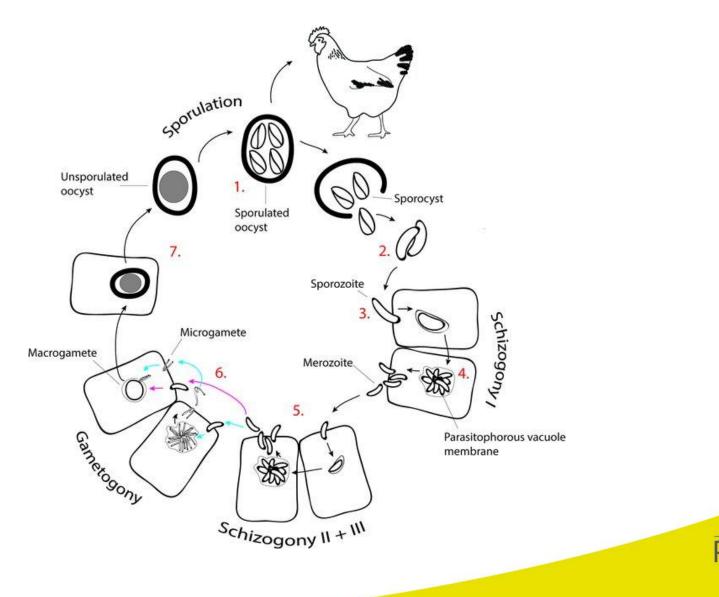
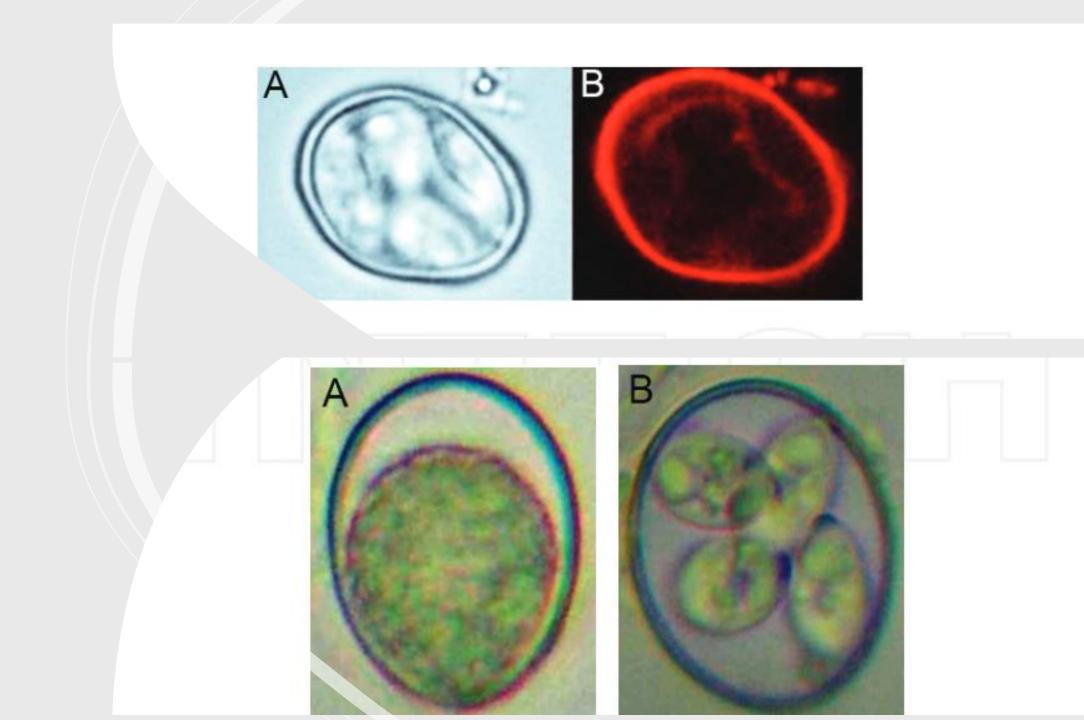


Coccidiostats in poultry – threats, challenges, and the future

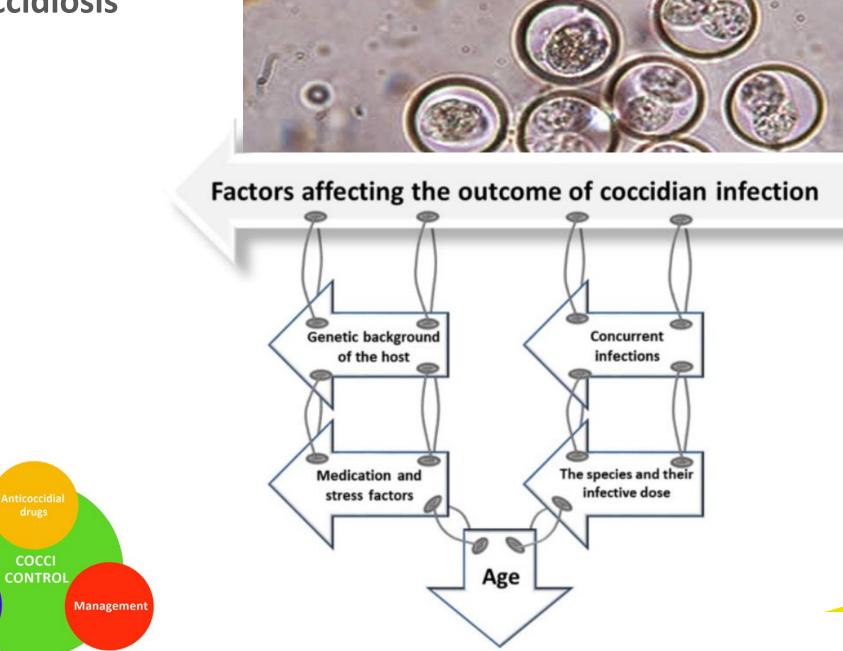
Lidia Radko, DVM, Sci


Associate Professor at University of Life Sciences in Poznań

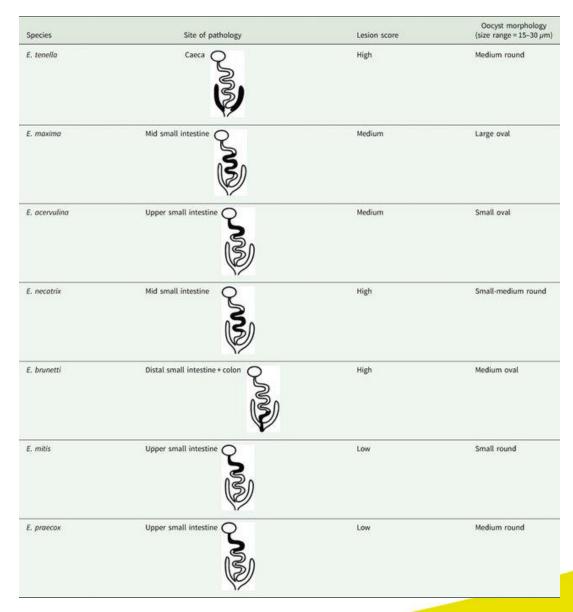
Coccidiosis



Life cycle of *Eimeria tenella*

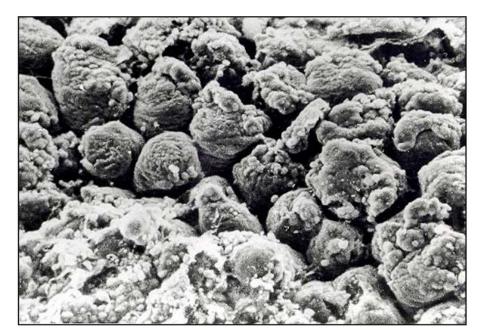


Coccidiosis


Immunisation

Eimeria spp affecting chickens

Comparison of the seven known *Eimeria spp* affecting chickens

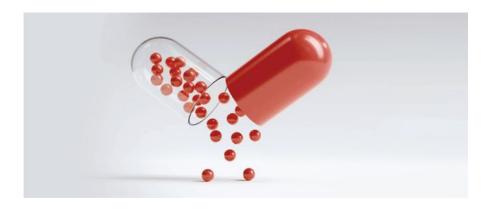


Scanning electron micrograph (approximately 650X) of ileum from uninfected 3-week-old turkey poult (photo provided by: P. Augustine)

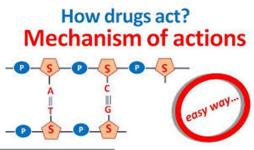
Scanning electron micrograph (approximately 650X) of ileum from 3-week-old turkey poult infected with Eimeria adenoeides at 6 days post-inoculation (photo provided by: P. Augustine)

Scanning electron micrograph (approximately 650X) of intestine, fractured transversely, from 3-week-old turkey infected with Eimeria dispersa at 6 days postinoculation

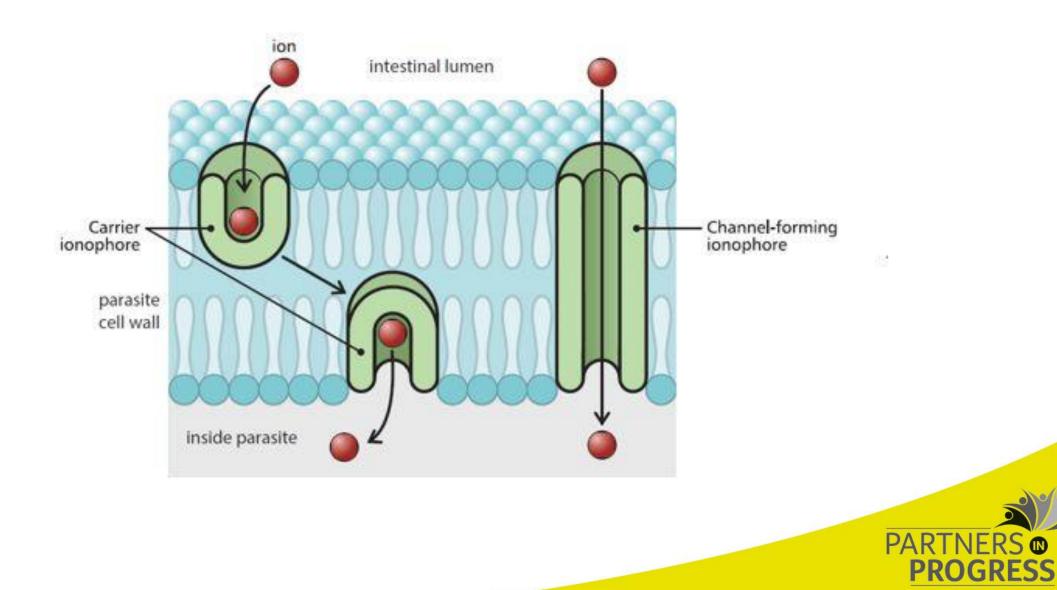
Coccidiostat categories


Synthetic compounds

- decoquinate (DEC)
- diclazuril (DIC)
- halofuginone (HFG)
- nicarbazin (NIC)
- robenidine hydrochloride (ROB)


Ionophores

- monensin sodium (MON)
- lasalocid sodium (LAS)
- maduramicin ammonium (MAD)
- narasin (NAR)
- salinomycin sodium (SAL)
- semduramicin sodium (SEM)


Coccidiosis treatment


Treatment	Examples	Function		
Ionophores	Lasalocid, Monensin, Narasinm Salinomycin, and Semduramicin	Disruption of ion gradient across the parasite cell membrane		
Chemicals	emicals Quinolone drugs (Decoquinate and nequinatem buquinolate). Pyridones (Meticlorpindol) Sulphonamides	Inhibition of parasite mitochondrial respiration		
	Sulphonamides	Inhibition of the folic acid pathway		
	Amprolium	Competitive inhibition of thiamine uptake		
	Diclazuril, Halofuginone, and Robenidine	e Mode of action unknown		
	Nicarbazin	Inhibition of the development of the first and second generations of the schizont stage of the parasites		

Ionophore

Resistance



Resistance

Compound	Active substance	Antibacterial activity
Ionophores	Narasin	Mainly active against Gram- positive bacteria
	Lasalocid sodium	Active against Gram-positive bacteria, but not against Gram- negative bacteria.
	Monensin sodium	Mainly active against Gram- positive bacteria.
	Salinomycin sodium	Active against Gram-positive bacteria, but not against Gram- negative bacteria.
	Maduramicin ammonium	Active against Gram-positive bacteria, but not against Gram- negative bacteria.
	Semduramicin sodium	Has limited antibacterial activity against Gram-negative microorganisms tested, and a minimal activity against selected Gram-positive control organisms
Non ionophores	Robenidine hydrochloride	No known antibacterial effect
	Diclazuril	No substantial antibacterial activity
	Decoquinate	Most tested strains of bacteria appear resistant to the effects of decoquinate at concentrations of > 64 mg /-1, substantially higher than the concentration of decoquinate expected in the digestive tract
	Halofuginon	No known antibacterial effect
	Nicarbazin	No known antibacterial effect

Residues

Residues

11.2.2009

		Substance Foodstuffs In				
		1. Lasalocid sodium	Food of animal origin from animal species other than poultry:			
			— milk;	1		
			— liver and kidney;	50		
			— other food,	5		
		2. Narasin	Food of animal origin from animal species other than chickens for fattening:			
)9			— eggs;	2		L 40/7
			— milk;	1		
			— liver;	50		
			— other food.	5		
		3. Salinomycin sodium	Food of animal origin from animal species other than chickens for fattening and rabbits for fattening:			
	setting		— eggs;	3	ulting from	
			— liver;	5		
			— other food.	2		
		4. Monensin sodium	Food of animal origin from animal species other than chickens for fattening, turkeys and bovine (including dairy cattle):			
			— liver;	8		
			— other food.	2		
		5. Semduramicin	Food of animal origin from animal species other than chickens for fattening.	2		
		6. Maduramicin	Food of animal origin from animal species other than chickens for fattening and turkeys.	2		
						PARINE
						PROGR

Maximum levels in foodstuffs

Residues

Substance	Foodstuffs	Maximum conten in µg/kg (ppb) we weight
10. Nicarbazin	Food of animal origin from animal species other than chickens for fattening:	
	— eggs;	100
	— milk;	5
	— liver and kidney;	100
	— other food.	25
11. Diclazuril	Food of animal origin from animal species other than chickens for fattening, turkeys for fattening, rabbits for fattening and breeding, ruminants and porcine:	
	— eggs;	2
	— liver and kidney;	40
	— other food.	5
7. Robenidine	Food of animal origin from animal species other than chickens for fattening, turkey and rabbits for fattening and breeding:	
	— eggs;	25
	— liver, kidney, skin and fat;	50
	— other food.	5
8. Decoquinate	Food of animal origin from animal species other than chickens for fattening, bovine and ovine except dairy animals.	20
9. Halofuginone	Food of animal origin from animal species other than chickens for fattening, turkeys and bovine except dairy cattle:	
	— eggs;	6
	— liver and kidney;	30
	— milk;	1
	— other food.	3

Toxicity of coccidiostats in poultry chicks and turkeys

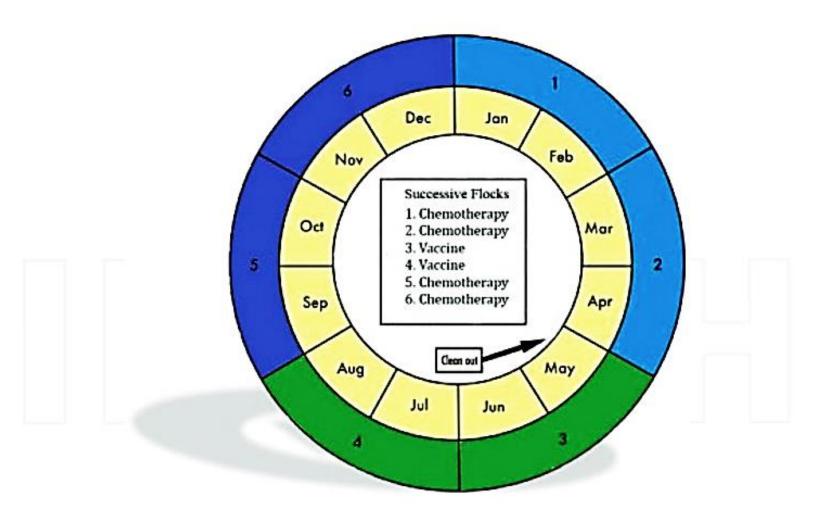
	Max. licensed (mg/kg feed)	Chicken (mg/kg feed)	T/NT	Turkey	T/NT
Ionophoric coccid	liostats				
Monensin	100-125	LOAEL 250	Т	LOAEL 150	Т
Lasalocid	125	NOAEL 150	Т	NOAEL 375	Т
		LOAEL 345			
Salinomycin	50-70	LOAEL 50 ^a	Т	LOAEL 13 ^b	NT
Narasin	70	LOAEL 100	Т	LOAEL 43°	NT
Maduramicin	5	LOAEL 5	Т	LOAEL 10	Т
Semduramicin	25	LOAEL 30	Т	NOAEL 25	NT
Non-ionophoric d	coccidiostats				
Robenidine	36	LOAEL 300	Т	LOAEL 750	Т
Decoquinate	40	LOAEL 320	Т	ND	NT
Nicarbazin	50	LOAEL 400	Т	ND	NT
Diclazuril	1	NOAEL 25	Т	NOAEL 25	Т
Halofuginone	3	LOAEL	Т	LOAEL 6	Т

T - target animal species, NT non target animal species.

^a Reduction of feed intake was the only adverse sign.

^b At a concentration of 13–18 mg/kg feed mortality reached 16%.

^c At a concentration of 43 mg/kg mg/kg feed, mortality exceeded 30%.

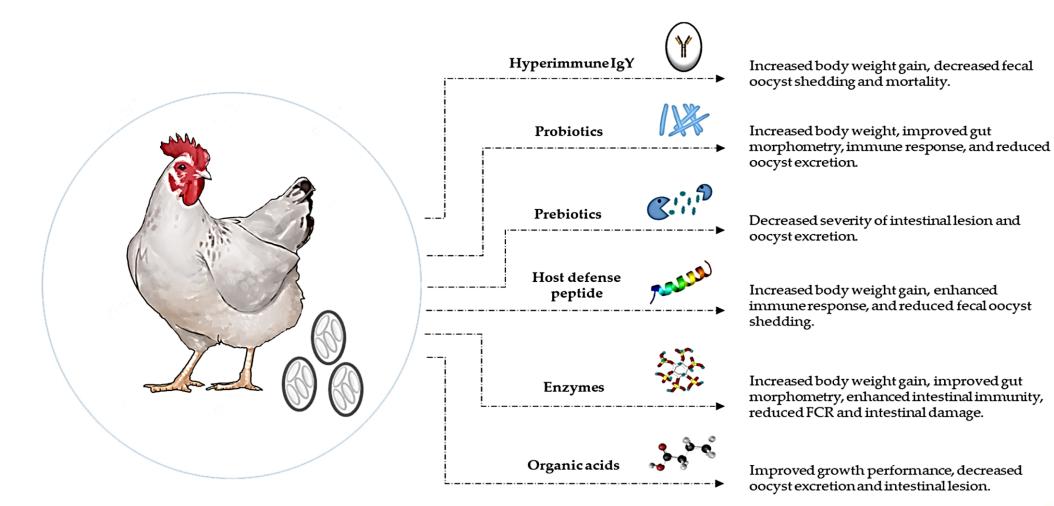


Vaccination

Vaccination

Figure 5. The proposal of use of chemotherapy and vaccines in a yearly chicken production. Figure taken from [17]. In the clean out period litter is removed. Chemotherapy comprises use of anticoccidial drugs.

Recombinant vaccines against coccidiosis


Target Antigens	Source (<i>Eimeria</i> spp.)	Administration Route	Vectors	Immune Response or Effects on Chcikens
EF1-α/EF2 *	E. acervulina, E. maxima, E. tenella	Immunized subcutaneously	pcDNA3.1 (+)	Increased body weight gain, improved immune response, and decreased fecal oocyst shedding
SO7	E. tenella	Immunized intramuscularly	pcDNA3, pVR1012	Increased body weight gain, reduced oocyst shedding, and cecal lesion score
Gam82	E. maxima	Immunized intramuscularly	pET28a (+), pTRA-ERH	Improved immune responses, increased body weight gain, reduced oocyst shedding and gut pathology
Gam56	E. maxima	Immunized intramuscularly	pcDNA3.1(zeo)+	Improved immune responses, increased body weight gain, and decreased oocyst shedding
EtSAG4	E. tenella	Chest intramuscular injection	pET28a	Improved cell-mediated immunity, increased average body weight, and reduced oocyst output
α-tubulin	E. acervulina	Immunized subcutaneously	pGEM-T	Reduced duodenal lesions
GAPDH *	E. acervulina, E. maxima E. tenella	Immunized intramuscularly	pSDEP2AIMP1S	Improved immune response, reduced gut lesions, increased body weight gain, and decreased oocyst shedding
Em14-3-3 *	E. maxima	Immunized subcutaneously, oral immunization	pVAX1	Improved immune responses, decreased gut lesions, and increased body weight gain
IMP1	E. maxima	Oral immunization	pSDEP2AIMP1S, pGEMT	Increased body weight gain, reduced parasite replication and gut lesions
AMA1	E. maxima	Oral immunization	pSDEP2AIMP1S	Increased body weight gain, reduced Eimeria replication, and reduced gut lesions
Profilin (3-1E)	E. acervulina, E. tenella, E. maxima	in ovo immunization, immunized intramuscularly	pcDNA3.1 (+), pET32a (+), pSDEP2ARS,	Enhanced immunogenicity, increased body weight gain, and reduced gut pathology

* Indicates antigens that are common immunodominant proteins among E. acervulina, E. tenella, and E. maxima.

Alternatives to control coccidiosis in chickens

Efficacy of *In Ovo* Delivered Prebiotics on Growth Performance, Meat Quality and Gut Health of Kuroiler Chickens in the Face of a Natural Coccidiosis Challenge

by Harriet Angwech ^{1,2,*} \square , Siria Tavaniello ¹ \square , Acaye Ongwech ^{1,2} \square , Archileo N. Kaaya ³ \square and Giuseppe Maiorano ¹ \square

Coccidiosis: Recent Progress in Host Immunity and Alternatives to Antibiotic Strategies

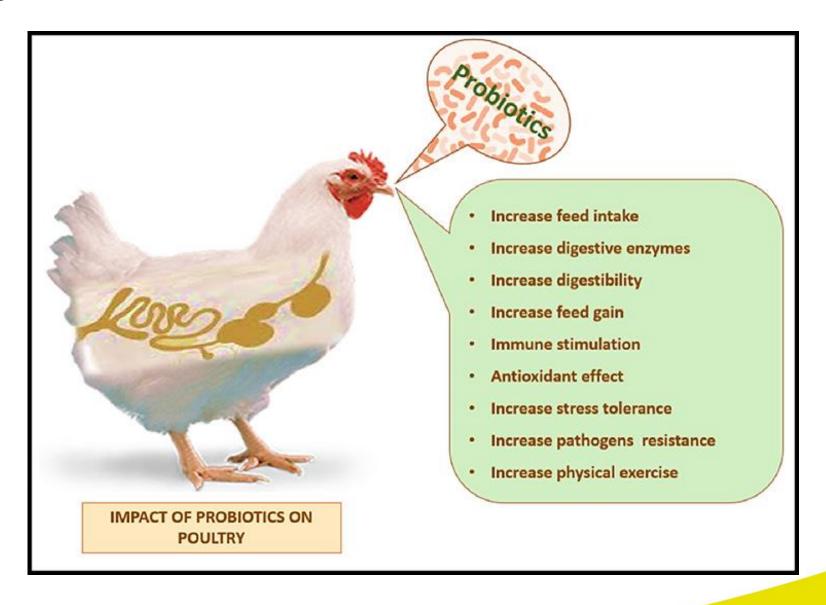
by Youngsub Lee 🖾 📴, Mingmin Lu 🖾 and Hyun S. Lillehoj * 🖾 💿

Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA The Effect of an in-feed Mannanoligosaccharide Preparation (MOS) on a Coccidiosis Infection in Broilers

M. A. Elmusharaf¹, H. W. Peek², L. Nollet³, and A. C. Beynen¹

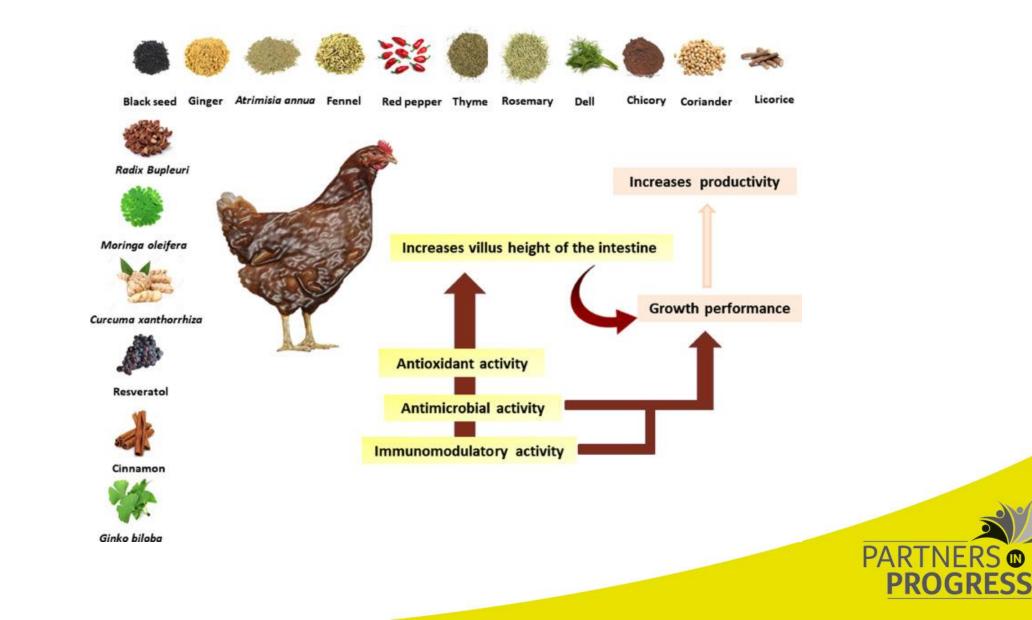
¹Department of Nutrition, Faculty of Veterinary Medicine, Utrecht University, the Netherlands ²Animal Health Service Ltd., Deventer, the Netherlands ³Alltech Biotechnology Centre, Dunboyne, Ireland

Animal Feed Science and Technology 134 (2007): 347-354.



Metabolism and Nutrition

Efficacy of in-feed preparations of an anticoccidial, multienzyme, prebiotic, probiotic, and herbal essential oil mixture in healthy and *Eimeria* spp.-infected broilers


<u>M. Bozkurt * A ⊠</u>, <u>N. Aysul †, K. Küçükyilmaz ‡, S. Aypak †, G. Ege *, A.U. Çatli *, H. Akşit [§],</u> <u>F. Çöven #, K. Seyrek [§], M. Çınar *</u>

Probiotics

Herbs

Plants – life cycle of Eimeria spp

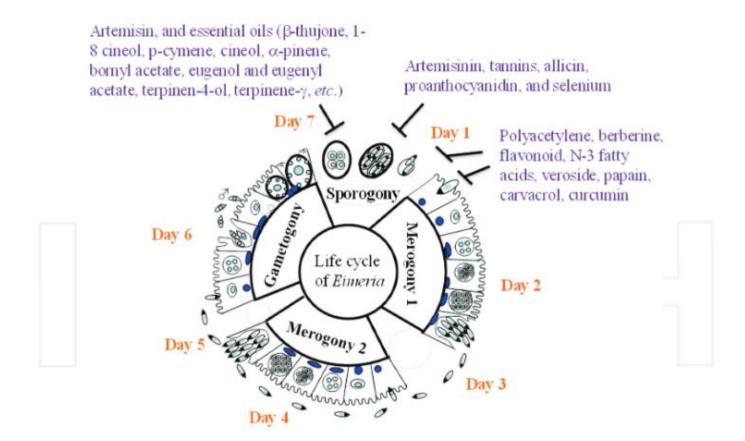


Figure 6. Plant compounds target different stages of life cycle of *Eimeria* species. Different phytocompounds inhibit the sporogony and merogony stages. Figure reproduced with permission from [32].

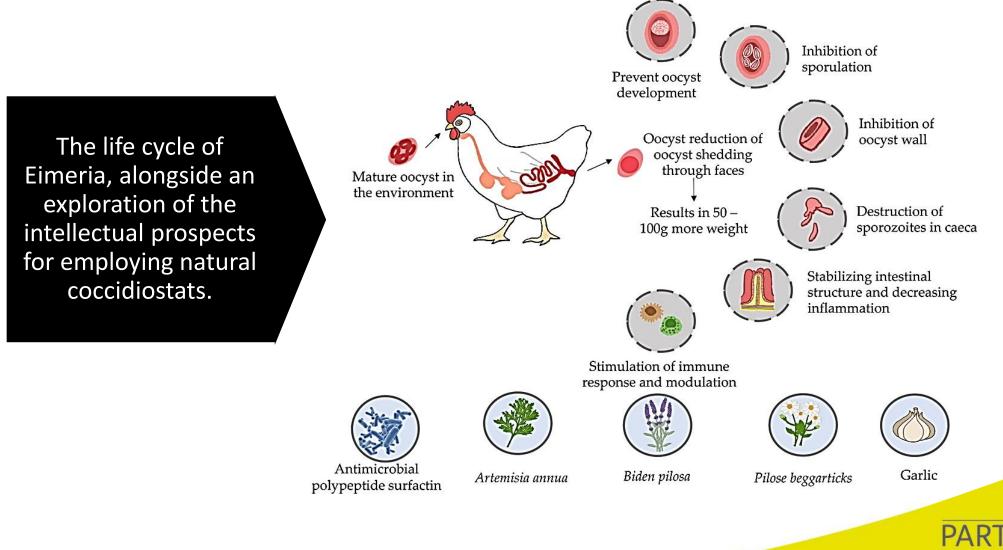
Herbal derivatives

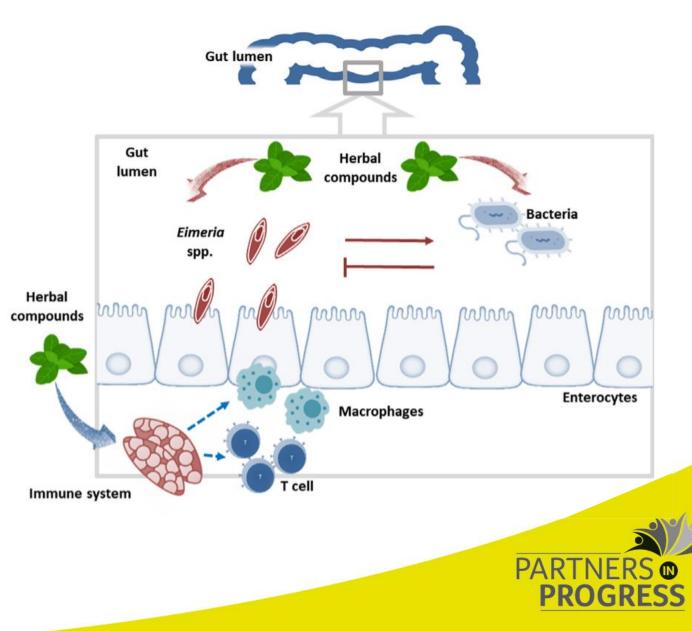
Fabaceae: Sophora flavescens, Gleditzia japonica Menispermaceae: *Sinomenium acutum*; Combretaceae: Quisqualis indica, Ranunculaceae, Pulsatilla koreana Ulmaceae: Ulmus macrocarpa; Asteraceae: Artemisia asiatica; Artemisia sieberi; Artemisia afra Meliaceae: *Melia azedarach*; Piperaceae: *Piper nigrum*; Urticaceae: Urtica dioica, Brassicaceae: Lepidium sativum; Apiaceae: Foeniculum vulgare; Rubiaceae: Morinda lucida;

Herbal derivatives

Burseraceae: Commiphora swynnertonii,

Moringaceae: *Moringa oleifera, Moringa indica, Moringa stenopetala*; Lamiaceae: *Origanum spp., Lavandula stoechas; Mentha arvensis*; Lauraceae: *Laurus nobilis*;


Musaceae: *Musa paradisiaca*; Solanaceae: *Solanum nigrum*; Meliaceae: *Melia azadirachta*; Amaryllidaceae: *Tulbaghia violacea*, Vitaceae: *Vitis vinifera*; Fagaceae: *Quercus infectoria*; Anacardiaceae: *Rhus chinensis*; Combretaceae: *Terminalia chebula*


Use of natural coccidiostats

PARTNERS © PROGRESS

Herbal anticoccidian compounds

Gut-associated T cells, macrophages, and the schematic process of immune response of chickens to herbal anticoccidian compounds.

Herbs

Action	Compound (Plant/fungi)	Function		
Inhibition of <i>Eimeria</i> life cycle	Artemisin (Artemisia annua)	Induce reactive oxygen species (ROS) that inhibit oocyst wall formation and sporulation		
	Tannins, Pine (Pinus radiata)	Inhibition of life cycle and decreased sporulation of the oocyst		
	Allicin and sulfur compounds, Garlic (Allium sativum)	Antimicrobial activity and inhibition of sporulation of <i>E. tenella</i> .		
	Selenium, Phenolics and Green tea (<i>Camellia sinensis</i>)	Inhibition of sporulation of coccidian oocysts.		
	Papain (Carica papaya)	Inhibition of coccidiosis probably by proteolytic degradation of <i>Eimeria</i>		
	Saponins (Cyamopsis tetragonoloba)	Suppression of coccidiosis		
	Essential oils from thyme, tea tree and clove	Destruction of Eimeria oocysts		
	Ethyl acetate extract (Meyerozyma guilliermondii)	Destruction of <i>Eimeria</i> spp. oocysts		
mmune response nodulators	Probiotics (Pediococcus acidilactici and Saccharomyces boulardii)	Enhanced humoral immunity, changes ir body weight gain and fecal oocyst shedd: rates.		
	Arabinoxylans (Triticum aestivum)	Immunostimulatory and protective effects against coccidiosis in broiler chickens		
	Sugar cane (Saccharum officinarum)			
	Polysaccharides (Astragalus membranaceus Radix, Carthamus tinctorius, Lentinula edodes, Tremella fuciformis)	Enhancement of anticoccidial antibodies and antigen-specific cell proliferation in splenocytes via cellular and humoral immunity to <i>E. tenella</i>		
	Phytonutrients mixtures: VAC (carvacrol, cinnamaldehyde, <i>Capsicum</i> oleoresin).	Protection against <i>E. tenella</i> infection. Increase in NK cells, macrophages, CD4+		
	MC (<i>Capsicum</i> oleoresin and turmeric oleoresin)	T cells, CD8 + T cells and cytokines IFN γ and IL6.		
	Lectins (Fomitella fraxinea)	Enhancement of both cellular and humoral immune response		

Table 3. Natural compounds identified with potential to inhibit *Eimeria* life cycle and acting as immune system modulators.

Artemisia annua

MDPI

Article Efficacy of Artemisia annua against Coccidiosis in Broiler **Chickens:** A Field Trial

Mircea Coroian ^{1,*,†}, Loredana Maria Pop ^{1,†}, Virgilia Popa ^{2,†}, Zsuzsa Friss ^{3,†}, Ovidiu Oprea ⁴, Zsuzsa Kalmár ^{1,5,6}, Adela Pintea ⁷, Silvia-Diana Borșan ¹, Viorica Mircean ¹, Iustina Lobonțiu ³, Dumitru Militaru ^{2,8,9}, Rodica Vârban¹⁰ and Adriana Györke^{1,*}

frontiers Frontiers in Physiology

TYPE Original Research PUBLISHED 15 May 2024 DOI 10.3389/fphys.2024.1381548

Check for updates

OPEN ACCESS

EDITED BY Katarzyna B. Miska, Agricultural Research Service (USDA), United States

REVIEWED BY Sara Cloft, Purdue University, United States Matt Tucker, Agricultural Research Service (USDA), United States Gino Lorenzoni, The Pennsylvania State University (PSU), United States

*CORRESPONDENCE Woo Kyun Kim

Effects of Artemisia annua supplementation on the performance and gut health of laying hens challenged with mixed Eimeria species

Milan Kumar Sharma¹, Guanchen Liu¹, Venkata Sesha Reddy Choppa¹, Hamid Reza Rafieian-Naeini¹, Fatemeh Sadat Mahdavi¹, Brett Marshall¹, Robert M. Gogal Jr² and Woo Kyun Kim^{1*}

Artemisia annua

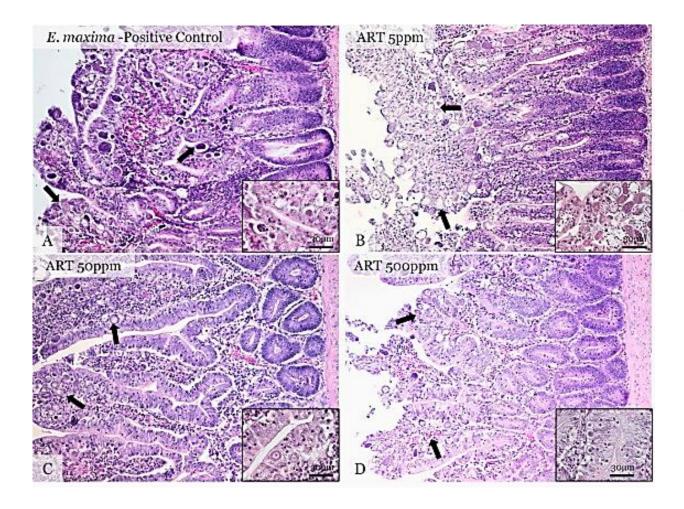
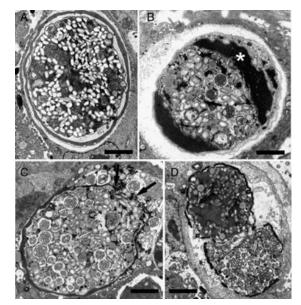
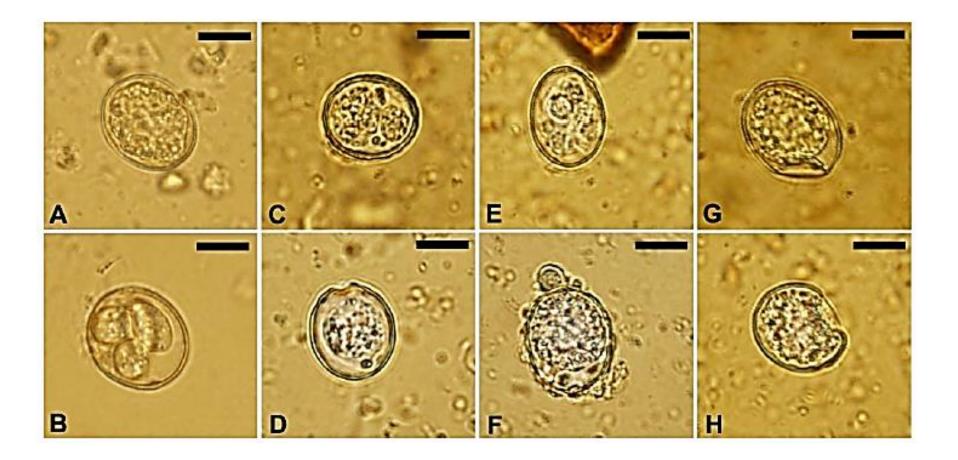



Table: The effect of artemisinin on oocysts sporulation rate in experimental groups of chickens challenged with E. acervulina (experiment I), E. maxima (experiment II), E. tenella (experiment III), compared with control groups

Group	I	11	III 10 16	1
NC	_	_		
РС	87.3 ± 0.76^{a}	82.7 ± 2.02^{a}	95.42 ± 0.74^{a}	
ART5	87.8 ± 1.28^{a}	78.1 ± 1.17^{a}	87.83 ± 1.19^{b}	
ART50	87.8 ± 1.16^{a}	78.5 ± 1.11^{a}	92.17 ± 0.67^{a}	
ART500	79.7 ± 0.68 ^c	72.7 ± 0.97^{b}	93.8 ± 0.57^{a}	
MON	84.0 ± 1.01^{b}	81.4 ± 1.24^{a}	87.3 ± 0.86^{b}	

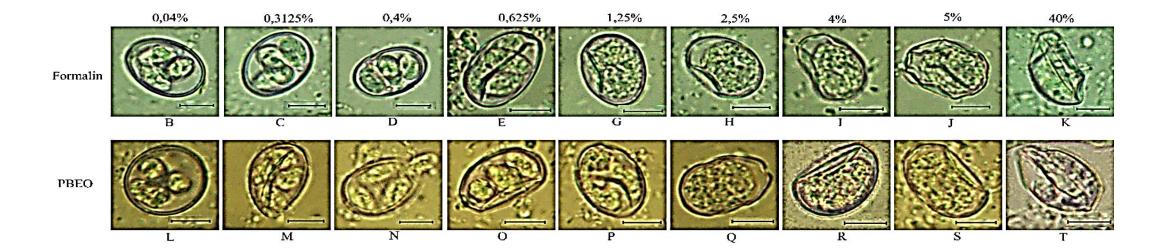

Values with no common superscript in a column were significantly different (p < 0.05); results are expressed in percentages as means \pm SEM; I: sporulation rate at 6 days p.i. II: sporulation rate at 7 days p.i. III: sporulation rate at 8 days p.i.

Artemisia sieberi

Changes observed after exposure of E. papillata oocytes to different treatment.

- (a) normal nonpopulated oocysts in H_2O ;
- (b) normal sporulated oocysts in K₂Cr₂O₇;

(c-h) abnormal oocytes in the ASLE (300 mg/mL). Scale bar = 12.5μ m.


Piper bettle L.

A

Control

K2Cr2O7 4%

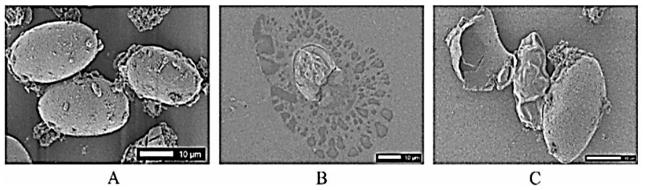
Morphology of Eimeria tenella oocysts treated with various concentrations of Piper bettle L essential oil (PBEO) and formalin after incubations for 72 h.

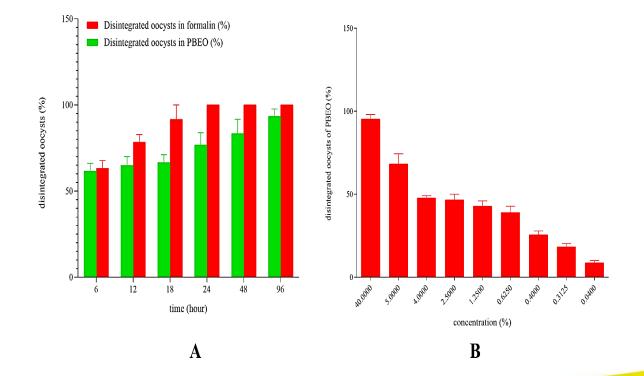
(A) $4\% K_2 Cr_2 O_7$ control in 72 h of incubation time.

- louter layer - inner layer

porozoites

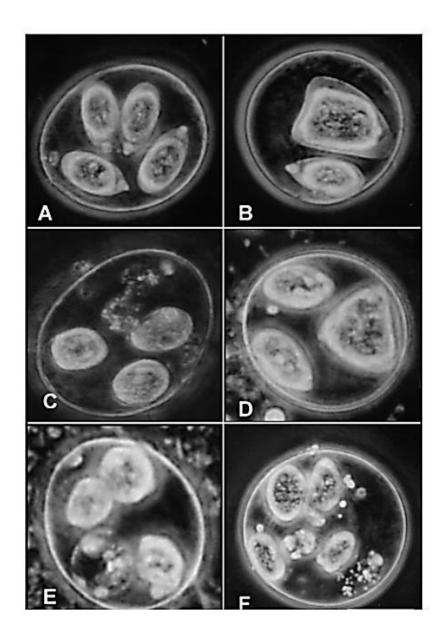
sporocysts


(B-K) Oocysts in 0.04%, 0.3125%, 0.4%, 0.625%, 1.25%, 2.5%, 4%, 5%, and 40% formalin.


(L-T) Oocysts in 0.04%, 0.3125%, 0.4%, 0.625%, 1.25%, 2.5%, 4%, 5%, and 40% PBEO.

Scale bars represented 10 μ m.

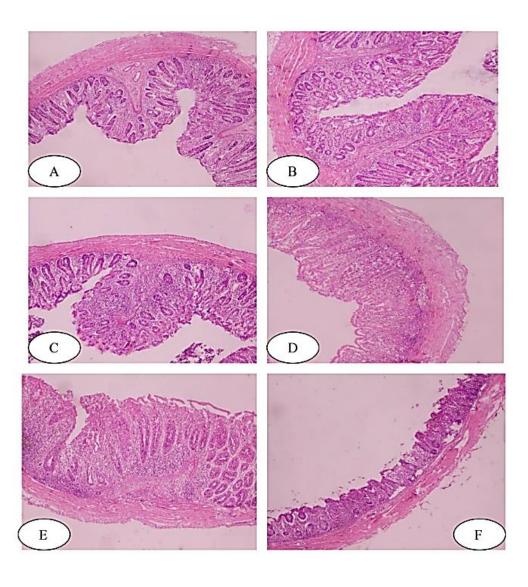
Piper bettle L.


- (A) Eimeria tenella oocysts from the control group showed an ovoid shape with intact walls and smooth surfaces.
- (B) Oocyst in 40% formalin showed total wall disintegration after 72 h incubation.
- (C) Oocyst-wall treated with Piper bettle L essential oil(PBEO) 40% was remarkably ruptured after incubation for 72 h.

Oocysticidal activities of formalin and Piper bettle L essential oil (PBEO) to *Eimeria tenella* oocysts

- (A) Disintegrated *E. tenella* oocysts treated with 20% PBEO and 20% formalin in different incubation times.
- (B) Number of disintegrated oocysts (%) incubated in different concentration ranges.

Pine bark (Pinus radiata)

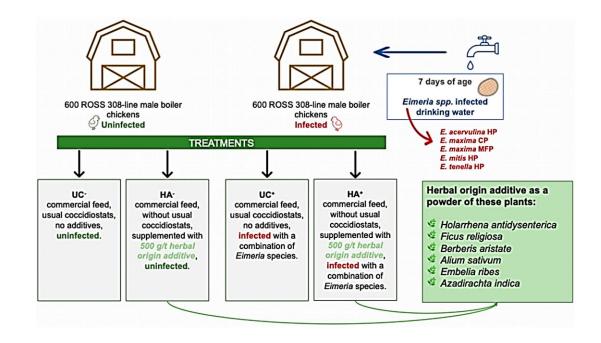

Photomicrographs of oocysts of Eimeria maxima

A – a typical sporulated oocyst from control incubation containing water only; B–F – abnormal oocysts from incubations containing 500 and 1000 µg pine bark extract (PBE)/ml. Oocysts were incubated for 48 h in the presence or absence of PBE and were viewed under bright field microscopy. Exposure to PBE caused changes in sporocyst numbers, size and morphology. (Note: Oocysts are slightly flattened to better illustrate morphology.) Scale bar (A–F) = 20 µm

Garlic and Ginger

- (A) Negative control
- (B) Amprolium treated
- (C) Garlic treated
- (D) Ginger treated
- (E) Ginger and garlic treated
- (F) positive control
- H & E stain (40 X) n = 100 μm.

PARTNERS


PROGRESS

Mixed herbs

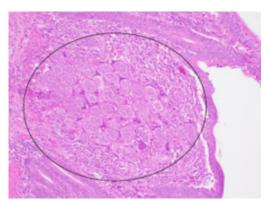
Table 5. The impact of herbal origin additives on the DM content and oocyst count in the broiler chicken litter.

. 1			Treatm	0.514.5				
ltem ¹	Age ²	UC-	UC+	HA-	HA+	SEM 5	p-Value	
DM of litter (%)	14 d	76.91	82.92	86.85	86.20	1.77	0.172	
	21 d	75.81	78.62	76.64	76.49	0.62	0.451	
	35 d	68.71 ^a	76.84 ^b	66.97 a	77.10 ^b	1.15	0.001	
Oocyst (g/l)	14 d	0.00 a	120.80 ^b	173.00 ¢	245.60 ^d	21.76	0.000	
	21 d	0.00 a	90.00 b	82.20 ^b	107.60 ^c	9.71	0.000	
	28 d	2.80 ^a	12.40 b	7.20 ¢	8.80 d	0.82	0.000	

Note: ¹ DM, dry matter; ² d, day; ³ UC⁻, control without infection with usual coccidiostat; UC⁺, control experimentally infected with usual coccidiostat; HA⁻, experimental without infection with herbal origin additive; HA⁺, experimentally infected with herbal origin additive. ⁴ The means with different superscript letters (a–d) in a row differ significantly (p < 0.05). ⁵ SEM, standard error of the means.

Evaluation of Herbal Anticoccidials on Growth Performance in Experimentally Infected Broiler Chickens

by Vilma Vilienė ¹ ⊠¹, Asta Racevičiūtė-Stupelienė ¹ ⊠¹, Daria Murawska ² ⊠¹, Michał Gesek ³ ⊠¹, Paulius Matusevičius ⁴ ⊠¹, zoja Miknienė ⁵ ⊠¹ and Monika Nutautaitė ^{1,*} ⊠¹


Mixed herbs

🗲 sciendo

Evaluation of the effectiveness of alternative methods for controlling coccidiosis in broiler chickens: a field trial

Sebastian Nowaczewski¹*, Sebastian Janiszewski², Sebastian Kaczmarek³, Natalia Kaczor², Przemysław Racewicz¹, Lukasz Jarosz⁴, Artur Ciszewski⁴, Piotr Ślósarz¹, Marcin Hejdysz¹

- ¹ Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Złotniki, Słoneczna 1, 62-002 Suchy Las, Poland
- ² AVICARE support for poultry production limited liability company, Piekarska 4, 62-820 Stawiszyn, Poland
- ³ Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
- ⁴ Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland

Table 6. Number (×10) of Eimeria sp. oocysts i	n 1 gram of feces
----------------------	----------------------------	-------------------

Age	Coccio	Coccidiostat		Vaccine		Herbs	
(day)	mean	SEM	mean	SEM	mean	SEM	P value
7	0.00	0.00	0.00	0.00	0.00	0.00	-
14	0.00 ^b	0.00	0.98ª	0.05	0.00 ^b	0.00	<.0001
21	30.76°	0.74	71.96ª	2.71	74.56ª	2.67	<.0001
28	85.76ª	2.11	49.70°	0.89	74.78 ^b	5.60	<.0001
35	11.97ª	0.59	5.01°	0.17	9.13 ^b	0.97	<.0001

^{abc}In rows means bearing different superscripts differ significantly at P≤0.05.

Mixed herbs

Vet Med Sci. 2022 Oct 17;9(2):829–836. doi: <u>10.1002/vms3.971</u>

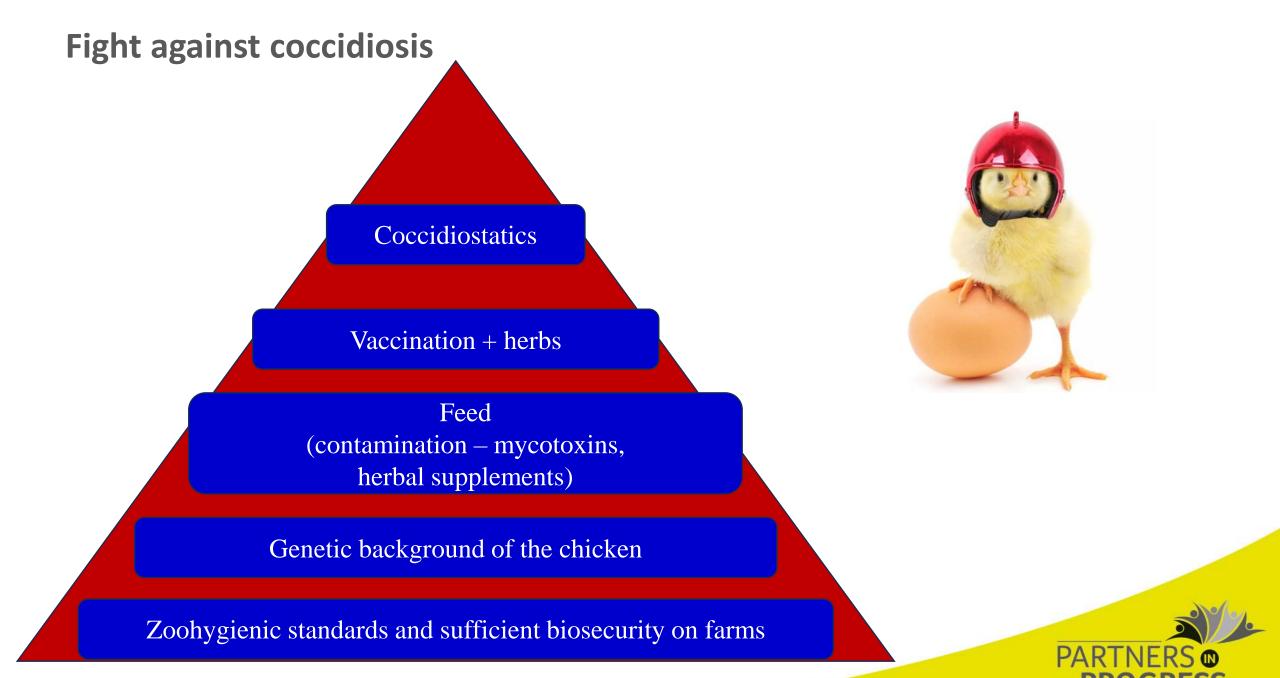
Evaluation of therapeutic effects of an herbal mixture (Echinacea purpurea and Glycyrrhiza glabra) for treatment of clinical coccidiosis in broilers

Seyed Ali Ghafouri ¹, Abolfazl Ghaniei ^{2,⊠}, Amir Ebrahim Tavanaee Tamannaei ³, Soheil Sadr ³, Ali Charbgoo ³, Shakila Ghiassi³, Morteza Abuali⁴

Mean ± SEM weight of birds in four groups of study during the 42 days

Group	First day	Day 7	Day 14	Day 21	Day 28	Day 35	Day 42
Herbal mixture (Group A)	48 ± 0.9	171 ± 6	408 ± 16	645 ± 50^{a}	867 ± 42 ^a	1430 ± 46^{a}	<mark>1910 ± 12</mark> 4ª
Toltrazuril (Group B)	48 ± 0.9	171 ± 6	408 ± 16	650 ± 50 ^a	865 ± 34^{a}	1310 ± 77^{a}	1833 ± 82^{a}
Challenged and not treated (Group C)	48 ± 0.9	171 ± 6	408 ± 16	550 ± 33 ^a	751 ± 42 ^a	1259 ± 44^{a}	1655 ± 118^{a}
No challenge	48 ± 0.9	171 ± 6	408 ± 16	670 ± 50^{a}	955 ± 82 ^a	1431 ± 103 ^a	1881 ± 151 ^a

No treatment (Group D)


Note: Means denoted by different superscript letters show significant differences between groups in each column (p < 0.05).

Lower jejunum

Cecum

Questions & Answers

THANK YOU!

