Understanding the dangers of mycotoxins for breeder hens As the producers of hatching eggs and day-old chicks, breeding hens are the backbone of the poultry industry. Hence it is common practice to pay particular attention to this valuable asset's feed, selecting raw materials of high nutritional quality and safety. However, in any feed formulated for animals in production and reproduction, <u>studies show</u> that it is almost inevitable to find a certain level of mycotoxin contamination. Mycotoxins exert toxic effects mainly on the gastrointestinal tract, liver, and kidneys and can accumulate in some tissues but also in the eggs. Mycotoxin contamination in breeder hens rations does not always lead to visible symptoms, such as when <u>trichothecenes cause oral lesions</u>. However, it may influence productivity, egg quality, hatchery performance, as well as chick quality and immunity. Mycotoxin risk management is thus an essential part of managing breeder hens. Mycotoxins can negatively affect eggshell quality and, as a consequence, embryonic mortality. By **Technical Team**, EW Nutrition. ## Type of mycotoxin and exposure time determine effect on egg production Mycotoxicosis in hens can cause reduced egg production, most likely because it causes a decrease in protein synthesis. A lower synthesis of albumin results from a degeneration of the liver tissue due to aflatoxin, ochratoxin, T2 and DON exposure. The liver then may look pale, friable and occasionally shows superficial hemorrhages. The contamination levels at which these effects can be observed are as low as 100ppb in feed, for example, during a 21-day exposure to ochratoxin (*Figure 1*). With increasing levels of the toxin, production further decreases. A similar effect is observed when breeder hens are exposed to aflatoxins. Figure 1 - Effect of mycotoxins on egg production, compared to non-contaminated control (=100 %) Egg production, however, is not the only parameter that is affected when breeding hens are exposed to mycotoxins. Earlier on in the reproductive cycle, they already impact on embryonic mortality and hatchability. These effects are potentially more severe and may even occur without any noticeable change in the number of eggs produced. ## Mycotoxins' insidious consequences for eggshell quality and embryonic mortality The eggshell is important to protect the progeny: thin and fragile shells can increase embryonic mortality, lower embryonic weight gain and decrease hatchability. Eggshell quality is a function of the hen's calcium and vitamin D3 metabolism. The bioavailability of calcium and of vitamin D3 depends on intestinal integrity and on the production of enzymes and transporters that aid in feed metabolism. These processes can be adversely affected by aflatoxins, DON, T2, and Fumonisins. The gastrointestinal tract is not the only site of mycotoxin action, however. Mycotoxins such as aflatoxins and ochratoxins have nephrotoxic effects, affecting calcium metabolism and increasing its excretion via the urine, while lowering its levels in blood serum. Moreover, mycotoxins damage the liver, which plays a central role in egg production, being responsible for vitamin D3 metabolism and the synthesis of the lipids that make up the yolk. Moreover, the synthesis of transporters for lipids, calcium, and carotenoids — important components of the egg— also takes place in the liver. When liver function is impaired, the internal and external quality of the egg declines, which, in the end, affects the production of day-old chicks. Figure 2 - Effects of mycotoxins on eggshell quality and embryonic mortality Figure 2 summarises the possible ways in which mycotoxins can negatively affect eggshell quality and, as a consequence, increase embryonic mortality. If a hen's intestinal integrity is compromised, the utilization of nutrients decreases. Liver and kidney damage leads to a diminished availability of calcium and other nutrients necessary for egg formation. The birds' calcium (and phosphorus) levels in the plasma are then lower and may lead to a greater mobilization of calcium from the bones. However, this response cannot be maintained and the eggs get a thinner shell. The thickness of the eggshell influences the egg's moisture loss and exchange with the environment during the incubation period. An eggshell of optimal quality does not allow the loss of nutrients and prevents bacterial contamination. Thinner eggshells are less able to fulfill these functions, leading to higher embryo mortality. Figure 3 - Effects of mycotoxins on embryonic mortality Figure 3 shows the effect of different mycotoxins on embryonic mortality. Incremental levels of ochratoxin or aflatoxin heighten embryonic mortality in a range from 1.5 to 7.5 times the embryonic mortality of the control group. In some cases, embryos are affected even when the hens received feed contaminated with mycotoxin levels that are within the guidelines suggested by the EFSA. For example, an exposure to 4900ppb of DON for ten weeks increases the number of embryos with abnormalities. The causes are not entirely clear, as only traces of DON can be found in the egg. However, we do know that this mycotoxin can affect the protein synthesis at the level of the hen's liver and therefore compromise the deposition of nutrients into the egg. ### Mycotoxins' effects on the progeny may cause long-term damage Ochratoxin and aflatoxin can be transferred into the egg, where they exert toxicity on the embryos. This does not necessarily result in mortality. However, the <u>chicks can suffer from a compromised immune function</u> due to two reasons: lower transmission of antibodies from the hen and lower viability of the chickens' immune cells, accompanied by a lower relative weight of the bursa of Fabricio and the thymus. When both aflatoxin and ochratoxin are present in the feed, the effect on these parameters is synergistic. As a consequence of mycotoxin contamination, the animals' immune response is impaired, which makes them more susceptible to infection. The final result could be increased early chick mortality due to a higher incidence of bacterial and viral infections. The transmission of other mycotoxins into the egg is minimal. While this means that a direct effect on the progeny is unlikely to occur, mycotoxin contamination still has a snowball effect: we have to consider the indirect effect of a lower deposition of nutrients on chick quality. ### Prevention is key: mycotoxin risk management for breeder hens The best approach to manage mycotoxin risk is to implement an integrated strategy that includes good crop and grain storing practices, regular raw material sampling and mycotoxin evaluation and analysis. Management tools (such as <u>MasterRisk</u>) can help to evaluate mycotoxin interactions and to choose the best strategy for dealing with specific mycotoxin challenges. The results of mycotoxin analyses can be used to take decisions regarding the inclusion levels of raw materials and in choosing <u>feed additives</u> that counteract mycotoxins. Products based on plant extracts, yeast cell walls, and clay minerals can help to stabilize a digestive system challenged by mycotoxins. They support the barrier function in the intestine, preventing the passage of mycotoxins into the bloodstream. <u>Phytomolecules</u> are another piece of the puzzle: thanks to their antimicrobial, anti-inflammatory and antioxidant properties, they support liver function. This is particularly important for long-living animals prone to accumulating mycotoxins in their body tissues. For a long time the "deleterious effects" of mycotoxins on breeder hens and "their repercussions on progeny health status and performance have not received from a scientific point of view as much attention"(Calini and Sirri, 2007) as they ought to have. However, now that the dangers of mycotoxins for breeder hens' welfare, health and performance are better understood, it is clear that mycotoxin risk evaluation and management is central to successful poultry production. *This article first appeared in All About Feed on 31 October 2018 #### Reference: Photo: Hans Prinsen. Brake, J., P. B. Hamilton, and R. S. Kittrell. "Effects of the Trichothecene Mycotoxin Diacetoxyscirpenol on Feed Consumption, Body Weight, and Oral Lesions of Broiler Breeders." *Poultry Science* 79, no. 6 (June 01, 2000): 856-63 doi:10.1093/ps/79.6.856. Brake, J., P. Hamilton, and R. Kittrell. "Effects of the Trichothecene Mycotoxin Diacetoxyscirpenol on Egg Production of Broiler Breeders." Poultry Science 81, no. 12 (December 01, 2002): 1807-810 doi:10.1093/ps/81.12.1807. Bryden, Wayne L. "Mycotoxin Contamination of the Feed Supply Chain: Implications for Animal Productivity and Feed Security." *Animal Feed Science and Technology* 173, no. 1-2 (2012): 134-58 doi:10.1016/j.anifeedsci.2011.12.014. Calini, F., and F. Sirri. "Breeder Nutrition and Offspring Performance." Revista Brasileira De Ciência Avícola 9, no. 2 (2007): 77-83 doi:10.1590/s1516-635×2007000200001. Hester, Patricia Y. "Improving Egg Production and Hen Health with Calcium." In *Egg Innovations and Strategies for Improvements*, edited by Patricia Y. Hester, 319-29. London: Academic Press, 2017 doi:10.1016/b978-0-12-800879-9.00030-5. Ul-Hassan, Zahoor, Muhammad Zargham Khan, Ahrar Khan, Ijaz Javed, and Muhammad Kashif Saleemi. "Immunological status of the progeny of breeder hens kept on ochratoxin A (OTA)- and aflatoxin B1 (AFB1)-contaminated feeds." Journal of Immunotoxicology 9, no. 4 (April 24, 2012): 381-91. doi:10.3109/1547691X.2012.675365. # Challenging times for broilers? Phytomolecules, not antibiotics, are the answer by Ajay Bhoyar, Global Technical Manager, EW Nutrition Anyone working with today's fast-growing broiler chicken knows that it is a sensitive creature – and so is its gut health. Thanks to continuous improvements in terms of genetics and breeding, nutrition and feeding, as well as general
management strategies, broiler production has tremendously upped performance and efficiency over the past decades. It is estimated that, between 1957 and 2005, the broiler growth rate increased by over 400%, while the feed conversion ratio dropped by 50%. These impressive improvements, however, have come at the cost of intense pressure on the birds' digestive system, which needs to process large quantities of feed in little time. To achieve optimal growth, a broiler's gastrointestinal tract (GIT) needs to be in perfect health, all the time. Unsurprisingly, enteric diseases such as necrotic enteritis, which severely damages the intestinal mucosa, hamper the intestines' capacity to absorb nutrients and induce an inflammatory immune response. #### The modern broiler's gut - a high-performing, #### but sensitive system However, in a system as high performing as the modern broiler's GIT, much less can lead to problems. From when they are day-old chicks up to slaughter, broilers go through several challenging phases during which they are more likely to show impaired gut functionality, e.g. after vaccinations or feed changes. Good management practices go a long way towards eliminating unnecessary stressors for the animals, but some challenging periods are unavoidable. The transition from starter to grower diets is a classic situation when nutrients are very likely to not be well digested and build up in the gut, fueling the proliferation of harmful microbes. Immunosuppressive stress in combination with an immature intestinal microflora results in disturbances to the bacterial microbiota. At "best", this entails temporarily reduce nutrient absorption, in the worst case the birds will suffer serious intestinal diseases. ### Phytomolecules - the intelligent alternative to antibiotics To safeguard performance during stressful periods, poultry producers need to anticipate them and proactively provide effective gut health support. For many years, this support came in the form of antibiotic growth promoters (AGP): administered prophylactically, they were effective at keeping harmful enteric bacteria in check. However, due to grave concerns about the <u>development of antimicrobial resistance</u>, non-therapeutic antibiotics use has been banned in many countries. Alternatives need to focus on improving feed digestibility and strengthening gut health, attacking the root causes of why the intestinal microflora would become unbalanced in the first place. Phytomolecules are secondary metabolites active in the defense mechanisms of plants. Studies have found that certain phytomolecules <u>stimulate digestive enzyme activities</u> and stabilize the gut microflora, "leading to improved feed utilization and less exposure to growth-depressing disorders associated with digestion and metabolism" (<u>Zhai et al., 2018</u>). With other trials showing <u>positive effects on broilers' growth performance and feed conversion</u>, the research indicates that phytomolecules might also specifically support chickens during challenging phases. ### The effect of phytomolecules on broilers during a challenging phase A study was conducted over a period of 49 days on a commercial broiler farm of an AGP-free integration operation in Japan. The farm reported gut health challenges in the second and third week of the fattening period due to vaccinations and changes to the animals' diets. The trial included 15504 Ross 308 broilers, divided into two groups. The negative control group included a total of 7242 birds, kept in another house. All the birds were fed the standard feed of the farm. The trial group (8262 birds) received Activo Liquid, which contains a synergistic combination of phytomolecules, administered directly through the drinking water. Activo Liquid was given at an inclusion rate of 200ml per 1000L of water (3.3 US fl oz per gallon of stock solution, diluted at 1:128), from day 8 until day 25, for 8 hours a day. The results are summarized in Figure 1: Figure 1: Improved broiler performance for Activo Liquid group (day 49) The Activo Liquid group clearly showed performance improvements compared to the control group. Livability augmented by 1.5%, while the feed conversion rate improved by 3.2%. This resulted in a more than 5% higher score in terms of the performance index. ## Challenging times? Tackle them using phytomolecules Poultry producers take great care to eliminate unnecessary sources of stress for their birds. Nonetheless, during their lifecycle, broiler chickens face challenging periods during which the balance of the intestinal microflora can easily become disturbed, with consequences ranging from decreased nutrient absorption to full-blown enteric disease. The trial reviewed here showed that, after receiving Activo Liquid, broilers raised without AGPs showed encouraging performance improvements during a challenging phase of feed changes and vaccinations. Likely thanks to the activation of digestive enzymes and a stabilization of the gut flora, the broilers showed improved livability and feed conversion, thus delivering a much more robust performance during a critical phase of their lives. In times where the non-therapeutic use of antibiotics is no longer an option, phytomolecules allow poultry farmers to effectively support their animals during challenging times. #### References Photo Source: Aviagen Adedokun, Sunday A., and Opeyemi C. Olojede. "Optimizing Gastrointestinal Integrity in Poultry: The Role of Nutrients and Feed Additives." Frontiers in Veterinary Science 5 (January 31, 2019): 348. Jamroz, D., T. Wertelecki, M. Houszka, and C. Kamel. "Influence of Diet Type on the Inclusion of Plant Origin Active Substances on Morphological and Histochemical Characteristics of the Stomach and Jejunum Walls in Chicken." Journal of Animal Physiology and Animal Nutrition 90, no. 5-6 (March 23, 2006): 255–68. Tavárez, Marcos A., and Fausto Solis De Los Santos. "Impact of Genetics and Breeding on Broiler Production Performance: a Look into the Past, Present, and Future of the Industry." Animal Frontiers 6, no. 4 (October 1, 2016): 37-41. Zhai, Hengxiao, Hong Liu, Shikui Wang, Jinlong Wu, and Anna-Maria Kluenter. "Potential of Essential Oils for Poultry and Pigs." Animal Nutrition 4, no. 2 (June 2018): 179–86. Zuidhof, M. J., B. L. Schneider, V. L. Carney, D. R. Korver, and F. E. Robinson. "Growth, Efficiency, and Yield of Commercial Broilers from 1957, 1978, and 20051." Poultry Science 93, no. 12 (December 2014): 2970–82. ## Want antibiotic-free broilers? Raise low-AB breeders Strong demand by consumers; restaurant chains and wholesalers for antibiotic-free (ABF) meat; the threat of <u>antimicrobial resistance</u>; and stringent regulations on the use of antibiotics – there are many good reasons for poultry producers to strive for antibiotic-free production systems. Crucially, to successfully produce poultry meat without antibiotics requires a paradigm shift that starts right at the parent stock level, with the antibiotic-free production of hatching eggs. ### Broiler breeders' gut health is linked to progeny's performance Broiler breeders' performance is measured in terms of how many saleable day old chicks (DOCs) per hen they produce. However, within a sustainable ABF production system (also known as No Antibiotics Ever or NAE), this parameter is not seen in isolation. Breeder hens' nutritional and health status not only affect the number of DOCs they can produce, but also the transfer of nutrients, antibodies, microbiota and even contaminants, e.g. mycotoxins, to the egg – and therefore, their progeny's long-term health and performance. This starts with egg formation, which requires several metabolic processes in the hen to function perfectly. If the hen's intestinal integrity is compromised, for example due to mycotoxins, she will absorb fewer nutrients, which in turn affects egg formation. <u>Mycotoxicosis has particularly insidious effects for egg formation</u> as it can damage the liver whose biosynthetic activities strongly impact on the egg's internal (yolk) and external (eggshell) quality. Chick embryos depend on the <u>maternal antibodies and nutrients deposited in the yolk</u>, including vitamin D3, carotenoids, and fatty acids, to develop normally. Eggshell quality, among other things, affects the embryo's access to oxygen, which is especially important when it develops body tissues. Hens' ability to form healthy eggs depends on their diet and health. Research indicates that, via the impact on egg formation, broiler breeders' feeding program quantifiably influences their progeny's immune system and intestinal health. There is indeed a direct relationship between parent and offspring's gut health because the chick's microbiome is in part also inherited from the hen. The impact on DOC quality is thus one of many dimensions to consider when calibrating one's broiler breeders feeding approach. #### The challenge of feeding an ABF broiler breeder Just as their offspring, breeder hens are genetically predisposed for rapid growth and muscle development. From rearing right through to the laying period, poultry nutritionists need to carefully balance their diets and moderate weight gain in order for hens to reach their reproductive potential. Different stages of a breeder's life cycle come with different objectives – for example, good flock uniformity in the rearing period versus egg size and hatchability in the laying phase – and thus different requirements in terms of calories, amino acids, vitamins, and minerals. What remains constant is that the actual nutrient intake depends on intestinal health, determining both the breeders' performance and, via the impact on egg characteristics, its progeny's performance. The <u>feeding regimes adopted to avoid hens becoming overweight can have a negative effect on their gut flora</u>. Without antibiotics as a tool to maintain or recover optimal gut function, even mild intestinal disorders can
quickly become chronical impairments that negatively impact breeders' productivity. In ABF production systems, intestinal health therefore needs to be a central focus for the feeding strategy. ## Can phytomolecules improve broiler breeders' performance? Among the plethora of feed additives, phytomolecules, or secondary plant compounds, stand out as a class of active ingredients that may help to improve gut health and thereby reduce the use of antibiotics. Synthesized by plants as a defense mechanism against pathogens, phytomolecules combine digestive, antimicrobial and antioxidant properties. Some studies have shown that <u>phytomolecules-based products</u> can increase broilers' body weight gain and improve laying hens' laying rate, egg mass and egg weight. Both broilers and laying hens responded to the inclusion of phytomolecules in their diet with inclusion rate-dependent improvements in feed conversion. To evaluate if phytomolecules could similarly improve broiler breeders' performance, two trials were conducted. ### Study I: Effect of phytomolecules on laying performance during peak production The first study was set up on a farm in Thailand. In total, 40000 Cobb broiler breeders (85% female, 15% male) were divided into two groups with 8500 hens (one house) in the control and 25500 (three houses) in the trial group. Both groups were fed standard feed. The trial group additionally received a phytomolecules-based liquid complementary feed (Activo Liquid, EW Nutrition GmbH) via the waterline from week 24 to week 32 at a rate of 200ml/1000L during 5 days per week. Activo Liquid was found to have a positive influence on laying performance (Figure 1). The average laying rate increased by 7.2% during the trial period, resulting in almost 3 additional hatching eggs per hen housed. A further indication of the beneficial influence that this particular combination of phytomolecules had on gut health was a 0.2% lower mortality. Figure 1: Laying rate (%) of breeder hens during first 9 weeks of production ### Study II: Effect of phytomolecules on laying performance after peak production For a second study, conducted in the Czech Republic, 800 female and 80 male Hubbard breeders (JA57 and M77, respectively) were divided into 2 groups with 5 replicate pens and 80 female and 8 male breeders per pen. The experiment started after the peak-production period, at 34 weeks of age and ended at 62 weeks of age. All animals received a standard mash diet. For one group a phytogenic premix (Activo, EW Nutrition GmbH) was added to the diet at a rate of 100g/MT. The results indicate that Activo helped maintain the breeder hens' egg laying performance close to the breed's genetic potential (Figure 2). In the course of the experiment, Activo supplemented birds produced 3.6 more eggs than control birds, while consuming a similar amount of feed. As a result, feed consumption per egg produced was lower for birds receiving phytomolecules than for the control birds (169.9 versus 173.6g/d, respectively). As hatchability was not influenced by the dietary treatment in this study (P>0.5), the 3.6 extra eggs resulted in 2.9 extra day old chicks per hen produced, during the post-peak period alone. The microencapsulated, selected phytomolecules contained in Activo are likely to have improved gut health and feed digestibility, and thereby enhanced the animals' feed efficiency. Figure 2: Laying rate (%) of breeder hens week 35 till 62 ## Chicken or egg? Antibiotic-free poultry production looks at the bigger picture To successfully produce antibiotic-free poultry meat requires a systematic re-think of each component of the production process. Broiler breeders' lay the foundation for their progeny's health and performance via the egg. Breeder hens need to be in optimal health to consistently deliver optimal eggs. Without recourse to antibiotics for maintaining or recovering intestinal functionality, an effective ABF production needs to make gut health central to its feeding approach. The trials reviewed demonstrate that selected phytomolecules quantifiably boost breeders' laying performance, increasing the number of hatching eggs and DOCs, while reducing mortality and feed consumption per egg produced. As part of an intelligent antibiotic reduction strategy, the right phytogenic products can be potent tools to help poultry producers achieve their NAE objectives. by Technical Team, EW Nutrition #### References Calini, F., and F. Sirri. "Breeder Nutrition and Offspring Performance." Revista Brasileira De Ciência Avícola 9, no. 2 (2007): 77-83. doi:10.1590/s1516-635×2007000200001. Ding, Jinmei, Ronghua Dai, Lingyu Yang, Chuan He, Ke Xu, Shuyun Liu, Wenjing Zhao, et al. "Inheritance and Establishment of Gut Microbiota in Chickens." Frontiers in Microbiology 8 (October 10, 2017): 1967. Kuttappan, Vivek A., Eduardo A. Vicuña, Juan D. Latorre, Amanda D. Wolfenden, Guillermo I. Téllez, Billy M. Hargis, and Lisa R. Bielke. "Evaluation of Gastrointestinal Leakage in Multiple Enteric Inflammation Models in Chickens." Frontiers in Veterinary Science 2 (December 14, 2015): 66. Moraes, Vera M. B., Edgar O. Oviedo-Rondón, Nadja S. M. Leandro, Michael J. Wineland, Ramon D. Malheiros, and Pamela Eusebio-Balcazar. "Broiler Breeder Trace Mineral Nutrition and Feeding Practices on Embryo Progeny Development." Avian Biology Research 4, no. 3 (2011): 122–32. Oviedo-Rondon, Edgar O., Nadja S. M. Leandro, Rizwana Ali, Matthew Koci, Vera M. B. Moraes, and John Brake. "Broiler Breeder Feeding Programs and Trace Minerals on Maternal Antibody Transfer and Broiler Humoral Immune response1." The Journal of Applied Poultry Research 22, no. 3 (October 1, 2013): # Beyond AGPs: Controlling necrotic enteritis through gut health optimization Antibiotic growth promoters (AGPs) have routinely been used in intensive poultry production for improving birds' performance. However, in recent years, reducing the use of <u>antibiotics in animal production has become a top priority</u>, due to concerns about the development of antibiotic-resistant bacteria and mounting consumer pressure. Multiple countries have introduced bans or severe restrictions on the non-therapeutic use of antibiotics, including in the US, where the Food and Drug Administration has implemented measures to curb the use of antibiotics since 2017. However, the removal of AGPs poses challenges for poultry performance, including reduced feed efficiency, decreased daily weight gain, as well as higher mortality. Moreover, the withdrawal of AGPs in feed is widely recognized as one of the predisposing factors for necrotic enteritis (NE). NE is one of the most common and economically important poultry diseases, with an <u>estimated global impact of US\$ 5 to 6 billion per year</u>. As a result of withdrawing AGPs, the usage of therapeutic antibiotics to treat NE has increased. To break out of this vicious cycle and to secure the efficiency of poultry production, alternatives are needed that combat NE where it starts: in the gut. #### **Necrotic enteritis: a complex disease** NE is caused by pathogenic strains of *Clostridium perfringens* (CP): ubiquitous, gram-positive, spore-forming anaerobic bacteria. The spores of CP can be found in poultry litter, feces, soil, dust, and contaminated feed. Low levels of different CP strains are naturally present in the intestines of healthy birds, kept in check by a balanced microbiome. However, when gut health is compromised, <u>pathogenic strains</u> can proliferate at the expense of <u>unproblematic strains</u>, resulting in clinical or sub-clinical NE. Animals suffering from the clinical form show symptoms such as general depression, reluctance to move, and diarrhea, with mortality rates of up to 50%. Infected birds suffer from degenerated mucosa lesions in the small intestines. Even in its "mild", subclinical form, which often goes unnoticed, the damage to the animals' intestinal mucosa can result in permanently reduced performance and consequent economic losses for the producer. Certain <u>predisposing factors</u> have been found to enable the proliferation of pathogenic strains in the gastrointestinal tract. Diet is a key example: the composition of the gut flora is directly linked to feed composition. High inclusion rates of cereals (barley, rye, oats, and wheat) that contain high levels of non-starch polysaccharides (NSPs), high levels of indigestible protein, and inclusion of proteins of animal origin (e.g. fishmeal) have been shown to predispose birds to NE. A range of diseases (e.g. chicken infectious anemia, Gumboro, and Marek's disease), but also other factors that have immunosuppressive effects, such as heat or cold stress, mycotoxins, feed changes, or high stocking density, render birds more susceptible to intestinal infections. The single most prominent predisposing factor for the occurrence of NE is the mucosal damage caused by coccidiosis. #### Gut health is key to combating necrotic enteritis To control NE, a holistic approach to optimizing the intestinal health of poultry is needed. It should take into account not only parameters such as diet, hygiene, and stress, but should also make use of innovative tools. Phytomolecules, also known as secondary plant compounds, are essentially plants' defense mechanisms against pathogens such as moulds, yeasts, and bacteria. Studies have demonstrated the antimicrobial effects of certain phytomolecules, including against antibiotic-resistant pathogens. Phytomolecules have also been found to boost the production of digestive enzymes, to suppress pro-inflammatory prostaglandins and have antioxidant properties. These features make them a potent tool for optimizing gut health, potentially to the point of replacing AGPs. #### Can phytomolecules mitigate the impact of necrotic enteritis? To study the impact of phytomolecules on the performance of broilers challenged with a NE-causing CP
strain, a trial was conducted at a US-based research facility. In this 42-day study, 1050 male day-old Cobb 500 broiler chicks were divided into 3 groups, with 7 replicates of 50 chicks each. On the first day, all animals were vaccinated against coccidiosis through a live oocyst spray vaccination. The experimental diets met or exceeded the National Research Council requirements, and were fed as crumbles/pellets. On days 19, 20, and 21, all pens, except the negative control group, were challenged with a broth culture of *C. perfringens*. A field isolate of CP known to cause NE (originating from a commercial broiler operation) was utilized as the challenge organism. On day 21, three birds from each pen were selected, sacrificed, group weighed, and examined for the degree of present NE lesions. The positive control group received no supplements. The trial group received a synergistic combination of two phytogenic products containing standardized amounts of selected, microencapsulated phytomolecules: an in-feed phytogenic premix (Activo, EW Nutrition GmbH) and a liquid complementary feed supplied via the drinking water (Activo Liquid, EW Nutrition GmbH). The products were given at inclusion rates corresponding to the manufacturer's baseline antibiotic reduction program recommendations (Figure 1): Trial Groups Challenge with NEcausing CP strain Negative control No Positive control Yes Activo + Activo Liquid Yes Activo 100g/MT + Activo Liquid at 250ml per 1000l on days 12-14 for 24 hrs per day, on days 19-21 for 16 hrs per day Figure 1: Trial design The trial results indicate that the addition of phytomolecules helps to mitigate the impact of NE on broilers' performance. The group receiving Activo and Activo Liquid showed a better feed conversion (Figure 2) compared to the positive control group (NE challenge, no supplement). Also, better lesion scores were noted for animals receiving phytomolecules (0.7 and 1) than for the positive control group (1.6). The most significant effect was observed concerning mortality: the group receiving Activo and Activo Liquid showed a 50% lower mortality rate than the positive control group (Figure 3). These results clearly indicate that phytomolecules can play an important role in mitigating losses due to NE. Figure 2: Adjusted FCR Figure 3: Lesion scores and mortality #### Tackling necrotic enteritis in a sustainable way In an age of AGP-free poultry production, a concerted focus on fostering animals' gut health is key to achieving optimal performance. This study strongly demonstrates that, thanks to their antimicrobial, digestive, anti-inflammatory and antioxidant properties, phytomolecules effectively support birds' intestinal health when challenged with NE. The inclusion of <u>Activo</u> and Activo Liquid, two phytogenic products designed to synergistically support birds during critical periods, resulted in improved feed conversion, better lesion scores, and 50% lower mortality. In combination with good dietary, hygiene, and management practices, phytomolecules are therefore a potent tool for reducing the use of antibiotics: including Activo and Activo Liquid in their animals' diets allows poultry producers to reduce the incidence of NE, to mitigate its economic impact in case of outbreaks, and therefore to control NE in a sustainable way. By by Ajay Bhoyar, Global Technical Manager, EW Nutrition #### References Antonissen, Gunther, Siska Croubels, Frank Pasmans, Richard Ducatelle, Venessa Eeckhaut, Mathias Devreese, Marc Verlinden, Freddy Haesebrouck, Mia Eeckhout, Sarah De Saeger, Birgit Antlinger, Barbara Novak, An Martel, and Filip Van Immerseel. "Fumonisins Affect the Intestinal Microbial Homeostasis in Broiler Chickens, Predisposing to Necrotic Enteritis." Veterinary Research 46, no. 1 (September 23, 2015): Moore, Robert J. "Necrotic Enteritis Predisposing Factors in Broiler Chickens." Avian Pathology 45, no. 3 (May 31, 2016): 275-81. doi:10.1080/03079457.2016.1150587. Tang, Karen L., Niamh P. Caffrey, Diego B. Nóbrega, Susan C. Cork, Paul E. Ronksley, Herman W. Barkema, Alicia J. Polachek, Heather Ganshorn, Nishan Sharma, James D. Kellner, and William A. Ghali. "Restricting the Use of Antibiotics in Food-producing Animals and Its Associations with Antibiotic Resistance in Food-producing Animals and Human Beings: A Systematic Review and Meta-analysis." The Lancet Planetary Health 1, no. 8 (November 6, 2017): 316-27. doi:10.1016/s2542-5196(17)30141-9. Van Immerseel, Filip, Julian I. Rood, Robert J. Moore, and Richard W. Titball. "Rethinking Our Understanding of the Pathogenesis of Necrotic Enteritis in Chickens." Trends in Microbiology 17, no. 1 (2009): 32-36. doi:10.1016/j.tim.2008.09.005. Wade, Ben, and Anthony Keyburn. "The True Cost of Necrotic Enteritis." PoultryWorld. October 09, 2015. Accessed August 19, 2019. Source Photo: Aviagen ## Phytomolecules: A tool against antibiotic-resistant E. coli #### Diseases caused by E. coli entail use of antibiotics in animal production E. coli infections are a major problem in pig production. Especially young animals with an incompletely developed immune system are often unable to cope with the cavalcade of pathogens. In poultry, E. coli are responsible for oedema, but also for <u>respiratory diseases</u>. In young piglets, E. coli cause diarrhoea, oedema, endotoxic shock and death. In order to cure the animals, antibiotics often must be applied. Besides this curative application, antibiotics were and in many countries still are used prophylactically and as growth promoters. The excessive use of antibiotics, however, leads to the <u>occurrence of antimicrobial resistance</u> (AMR): due to mutations, resistance genes are created which enable enterobacteria such as Salmonella, Klebsiella and E. coli to produce enzymes (ß-lactamases) in order to withstand ß-lactam antibiotics. In case of an antibiotic treatment, the resistant bacteria survive whereas the other bacteria die. The major problem here is that these resistance genes can be transferred to other bacteria. Harmless bacteria can thus transfer resistance genes to dangerous pathogens, which then cannot be combatted with antibiotics anymore. In this article we explore in detail how AMR happens and how phytomolecules, which have antimicrobial properties, could be a key tool to reduce the need for antibiotics in animal production. #### How **B-lactam** antibiotics work The group of ß-lactam antibiotics consists of penicillins, cephalosporins, monobactams, and carbapenems. These antibiotics are characterised by their lactam ring (Figure 1). Figure 1: An antibiotic with a ß-lactam ring (in orange) If bacteria are growing, the cell wall also has to grow. For this purpose existing conjunctions are cracked and new components are inserted. In order for the cell wall to remain a solid barrier, the new components must be interconnected by crosslinks. For the creation of these crosslinks an enzyme is essential, the transpeptidase (figure 2). Figure 2: building up a stable cell wall with the help of transpeptidase Due to their structure, ß-lactam-antibiotics also fit as binding partner for transpeptidase. They bind to the enzyme and block it (Kohanski et al., 2010). The crosslinks cannot be created and the stabilization of the cell wall is prevented. Disturbance of cell wall stability leads to the death of the bacterial cell, hence ß-lactam antibiotics act bactericidal. Figure 3: blocked by B-lactam antibiotics, transpeptidase cannot serve as enzyme for building the cell wall #### The challenge: E. coli producing ß-lactamases Resistant bacteria, which are able to produce ß-lactamases – enzymes that destroy the ß-lactam ring – prevent their own destruction. Divers point mutations within the ß-lactamase genes lead to the occurrence of "extended-spectrum-beta-lactamases" (ESBL). ESBL are able to inactivate most of the ß-Lactamantibiotics. Another mutation leads to so-called AmpC (aminopenicillin and cephalosporin) ß-lactamases. They enable the *E. coli* to express a resistance against penicillins, cephalosporins of the second and third generation as well as against cephamycins. #### Phytomolecules - an alternative? One approach to reduce the use of antibiotics is the utilization of phytomolecules. These secondary metabolites are produced by plants to protect themselves from moulds, yeasts, bacteria and other harmful organisms. The use of plants and their extracts in human and veterinary medicine is well-established for centuries. Besides digestive and antioxidant characteristics they are well known for their bacteriostatic and bactericidal effects. Consisting of a high number of chemical compounds, they attack at diverse points and their antimicrobial effect is not caused by only one single specific mechanism. This is crucial because it is therefore very unlikely that bacteria can develop resistances to phytomolecules like they do to antibiotics. #### How phytomolecules work Mostly, phytomolecules act at the cell wall and the cytoplasm membrane level. Sometimes they change the whole morphology of the cell. This mode of action has been studied extensively for thymol and carvacrol, the major components of the oils of thyme and oregano. They are able to incorporate into the bacterial membrane and to disrupt its integrity. This increases the permeability of the cell membrane for ions and other small molecules such as the energy carrier ATP (Adenosin-tri-phosphate). It leads to the decrease of the electrochemical gradient above the cell membrane and to the loss of energy equivalents of the cell. #### A special challenge: gram-negative bacteria Gram-negative bacteria such as *E. coli* and *Salmonella* pose a special challenge. The presence of lipopolysaccharides in the outer membrane (OM) provides the gram-negative bacteria with a hydrophilic surface (Nikaido, 2003; Nazarro et al., 2013) (see also blue infobox). The cell wall therefore only allows the passage of small hydrophilic solutes and is a
barrier against macromolecules and hydrophobic compounds such as hydrophobic antibiotics and toxic drugs. The bypassing of the OM therefore is a prerequisite for any solute to exert bactericidal activity toward gramnegative bacteria (Helander et al., 1998). Based on their trial results Helander et al. (1998) (1998) concluded that trans-cinnamaldehyde and partly also thymol and carvacrol gain access to the periplasm and to the deeper parts of the cell. Nikaido (1996) also concluded that OM-traversing porin proteins allow the penetration of lipophilic probes at significant rates. #### Evaluating phytomolecules I - in vitro trial, Scotland A trial conducted in Scotland evaluated the effects of Activo Liquid, a mixture of selected phytomolecules and citric acid, on ESBL-producing *E. coli* as well as on *E. coli* that generate AmpC. #### **Material and methods** For the trial two strains for each group were isolated from the field, a non-resistant strain of E. coli served as control. Suspensions of the strains with 1×10^4 CFU/ml were incubated for 6-7 h at 37° C (98.6°F) together with diverse concentrations of Activo Liquid or with cefotaxime, a cephalosporin. The cefotaxime group saved as a control for differentiating resistant and non-resistant E. coli. The suspensions were put on LB agar plates and bacteria colonies were counted after further 18-22h incubation at 37°C. #### **Results** The antimicrobial efficacy of the blend of phytomolecules depended on the concentration at which they were used (see table 1). A bacteriostatic effect could be shown at dilutions up to 0.1 %, a bactericidal effect at higher concentrations. Table 1: Effect of phytomolecules against resistant E. coli producing ESBL and AmpC in poultry | Poultry Microbiology
Laboratory, Edinburgh, | Cefotaxime | Phytomolecules (Activo® Liquid) | | | | |--|------------|---------------------------------|-------|-------|-------| | Scottland | 30 μg / ml | 0.1 % | 0.2 % | 0.4 % | 0.5 % | | E. coli ESBL 1 (Poultry) | - | + | ++ | ++ | ++ | | E. coli ESBL 2 (Poultry) | - | + | ++ | ++ | ++ | | E. coli AmpC 1 (Poultry) | - | + | ++ | ++ | ++ | | E. coli AmpC 2 (Poultry) | - | ++ | ++ | ++ | ++ | | E. coli non-resistant | + | + | ++ | ++ | ++ | | - no effect
+ growth inhibiting (bacteriostatic)
++ bactericidal | | | | | | #### **Evaluating phytomolecules II - in vitro trial, Germany** A further trial was conducted in Germany (Vaxxinova, Münster), confirming the preceding results. #### **Material and methods** Four ESBL producing *E. coli* all isolated from farms and a non-resistant reference strain as control were tested concerning their sensitivity against Activo Liquid. Every bacteria strain (Conc.: 1×10^4 CFU/ml) was subjected to a bacterial inhibition assay in an appropriate medium at 37°C for 6-7 hours. #### **Results** In this trial Activo Liquid also showed a dose-dependent efficacy, with no or just a bacteriostatic effect up to a concentration of 0.1 %, but bactericidal effects at a concentration of ≥ 0.2 % (table 2). Table 2: Effect of phytomolecules against resistant ESBL producing E. coli in pig and in poultry | Vaxxinova GmbH, | Phytomolecules (Activo® Liquid) | | | | | |--------------------------|---------------------------------|-------|-------|----|--| | Münster | 0.1 % | 0.2 % | 0.4 % | 1% | | | E. coli ATCC25922 | + | ++ | ++ | ++ | | | E. coli ESBL 1 (Pig) | - | ++ | ++ | ++ | | | E. coli ESBL 2 (Pig) | + | ++ | ++ | ++ | | | E. coli ESBL 3 (Poultry) | + | ++ | ++ | ++ | | | E. coli ESBL 4 (Poultry) | - | ++ | ++ | ++ | | | - no effect | | | | | | - growth inhibiting (bacteriostatic) - bactericidal #### Phytomolecules: a promising outlook E. coli infections have devastating effects on animals, from diarrhea to edema, enterotoxic shock and even death. Antibiotic treatments have long been the only practicable answer. However, their excessive use for instance, the metaphylactic application to thousands of animals in a flock—has led to the development of resistant strains. There is evidence that a reduction of antibiotic use reduces the occurrence of resistances (Dutil et al., 2010). The results of the two in vitro trials in Scotland and Germany demonstrate the bactericidal effects of phytomolecules on E. coli that produce ESBL and AmpC. Using phytomolecules could thus reduce the use of antibiotics and therefore also the occurrence of AMR. While it is theoretically possible for bacteria to also become resistant against phytomolecules, the probability of this happening is very low: unlike antibiotics, phytomolecules contain hundreds of chemical components with different modes of action. This makes it exceedingly difficult for bacteria to adapt and develop resistance. To tackle the problem of antibiotic-resistant E. coli, antimicrobial phytomolecules therefore offer a promising, sustainable and long-term solution. By Dr. Inge Heinzl, Editor, EW Nutrition #### Literature Dutil, Lucie, Rebecca Irwin, Rita Finley, Lai King Ng, Brent Avery, Patrick Boerlin, Anne-Marie Bourgault, Linda Cole, Danielle Daignault, Andrea Desruisseau, Walter Demczuk, Linda Hoang, Greg B. Horsman, Johanne Ismail, Frances Jamieson, Anne Maki, Ana Pacagnella, and Dylan R. Pillai. 2010." Ceftiofur Resistance in Salmonella enterica Serovar Heidelberg from Chicken Meat and Humans, Canada." Emerg Infect Dis 16 (1): 48-54. Helander, Ilkka M., Hanna-Leena Alakomi, Kyösti Latva-Kala, Tiina Mattila-Sandholm, Irene Pol, Eddy J. Smid, Leon G. M. Gorris, and Atte von Wright. 1998. "Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria." J. Agric. Food Chem 46: 3590-595. Kohanski, Michael A., Daniel J. Dwyer, and James J. Collins. 2010. "How Antibiotics Kill Bacteria: From Targets to Networks." Nature Reviews 8: 423-435. Nazarro, Filomena, Florinda Fratianni, Laura De Martino, Raffaele Coppola, and Vincenzo De Feo. 2013. "Effect of Essential Oils on Pathogenic Bacteria." Pharmaceuticals 6 (12): 1451-1474. Nikaido, Hiroshi " Molecular Basis of Bacterial Outer Membrane Permeability Revisited. 2003. " Microbiology and Molecular Biology Reviews, 67 (4): 593-656. Rodriguez, Tori. 2015 "Essential Oils Might Be the New Antibiotics." The Atlantic. http://www.theatlantic.com/health/archive/2015/01/the-new-antibiotics-might-be-essential-oils/384247/ Rüben, Christiane. 2009. "Antimikrobielle Wirksamkeit von chemischen Einzelkomponenten ätherischer Öle gegenüber ausgewählten Lebensmittelverderbniserregern". PhD diss, TeHo Hannover. ## Phytomolecules: Boosting Poultry Performance without Antibiotics Antimicrobial resistance (AMR) is a major threat to global public health. It is largely caused by the overuse of antibiotics in human medicine and agriculture. In intensive poultry production most antibiotics are used as antimicrobial growth promoters and/or used as prophylactic and metaphylactic treatments to healthy animals. Reducing such antibiotic interventions is crucial to lowering the incidence of AMR. However, antibiotic reduction often results in undesirable performance losses. Hence alternative solutions are needed to boost poultry performance. Phytomolecules have antimicrobial, digestive, anti-inflammatory and antioxidant properties, which could make them key to closing the performance gap. #### Poultry performance depends on intestinal health Poultry performance is to a large extent a function of intestinal health. The intestines process nutrients, electrolytes and water, produce mucin, secrete immunoglobulins and create a barrier against antigens and pathogens. In addition, it is an important component of the body's immune defense system. The intestine has to identify pathogens and reject them, but also has to tolerate harmless and beneficial microorganisms. If the intestines do not function properly this can lead to food intolerance, dysbiosis, infections and diseases. All of these are detrimental to feed conversion and therefore also to animal performance. Antibiotics reduce the number of microorganisms in the intestinal tract. From a performance point of view this has two benefits: first, the number of pathogens is reduced and therefore also the likelihood of diseases; second, bacteria are eliminated as competitors for the available nutrients. However, the overuse of antibiotics not only engenders AMR: antibiotics also eliminate probiotic bacteria, which negatively impacts the digestive tracts' microflora. Products to boost poultry performance may be added to their feed or water. They range from pre- and probiotics to medium chain fatty acids and organic acids to plant extracts or phytomolecules. Especially the latter have the potential to substantially reduce the use of antibiotics in poultry farming. #### Phytomolecules are promising tools for antibiotic reduction Plants produce phytomolecules to fend off pathogens such as moulds, yeasts and bacteria. Their antimicrobial effect is achieved through a variety of complex mechanisms. Terpenoids and phenols, for example, disturb or destroy the pathogens' cell wall. Other phytomolecules inhibit their growth by influencing their genetic material. Studies on broilers show that certain phytomolecules reduce the adhesion of pathogens such as to the wall of the intestine. Carvacrol and thymol were found to be effective against different species of *Salmonella* and *Clostridium perfringens*. There is even evidence that secondary plant compounds also possess antimicrobial characteristics against antibiotic resistant pathogens. In-vitro trials with cinnamon oil, for example, showed antimicrobial effects against methicillin resistant Staphylococcus aureus, as well as against multiresistant E. coli, Klebsiella pneumoniae and Candida albicans. Importantly, there are no known cases to date of bacteria developing resistances to phytomolecules. Moreover, phytomolecules increase the production and activity
of digestive enzymes, they suppress the metabolism of pro-inflammatory prostaglandins and they act as antioxidants. Their properties thus make them a promising alternative to the non-therapeutic use of antibiotics. #### Study design and results In order to evaluate the effect of phytomolecules on poultry performance, multiple feeding studies were conducted on broilers and laying hens. They were given a phytogenic premix (<u>Activo</u>, EW Nutrition GmbH) that contains standardized amounts of selected phytomolecules. To achieve thermal stability during the feed processing and a targeted release in the birds' <u>gastrointestinal</u> <u>tract</u>, the product is microencapsulated. For each , the studies evaluated both the tolerance of the premix and the efficacy of different dosages. #### Study I: Evaluation of the dose dependent efficacy and tolerance of Activo for broilers Animals: 400 broilers; age: 1-35 days of age Feed: Basal starter and grower diets Treatments: No supplement (negative control)100 mg of Activo /kg of feed1.000 mg of Activo /kg of feed - 10.000 mg of Activo /kg of feed Parameters: weight gain, feed intake, feed conversion ratio, health status, and blood parameters **Results:** The trial group given the diet supplemented with 100 mg/kg <u>Activo</u> showed significant improvements in body weight gain during the starter period (+4%) compared to the control group. Additional significant improvements in feed conversion ratio (FCR) in the growing period (+4%) resulted in an overall improvement in FCR of 3%. At a 1.000 mg/kg supplementation, a significant improvement in FCR of 6% was observed over the entire feeding period. Hematological parameters were within the reference range of healthy birds when feeding up to 10,000 Activo/ kg of feed. #### Study II: Evaluation of the dose depending efficacy and tolerance of Activo for laying hens Animals: 200 hens; age: 20 to 43 weeks Feed: basal diet for laying hens Treatments: - No supplement (negative control) - 100 mg of Activo/ kg of feed- 250 mg of Activo/ kg of feed- 500 mg of Activo/ kg of feed - 5.000 mg of Activo/ kg of feed Parameters: weight gain, feed intake, feed conversion ratio, health status, and blood parameters **Results:** Inclusion levels from 100 mg/kg of Activo onwards improved laying performance, egg mass and egg weight and reduced FCR compared to the control group. Results recorded for hematological parameters were within the reference range of healthy birds when feeding up to 5.000 mg Activo/ kg of feed. #### Study III: Evaluation of the dose-dependent effects of Activo for coccidiosis vaccinated broilers Animals: 960 broiler chickens; age: 42 days Feed: Standard starter and finisher feed Treatments: - No supplement (negative control) 50 g of Activo /US ton of feed100 g of Activo /US ton of feed - 150 g of Activo /US ton of feed - 200 g of Activo /US ton of feed - 250 g of Activo /US ton of feed - Antibiotic growth promoter (AGP)(positive control) Parameters: weight gain, feed efficiency Specific: In order to represent field conditions, the birds were challenged with used, homogenized litter. **Results**: A clear dose response for both body weight gain and feed efficiency was observed (see Figure 1): the more phytogenic premix given, the better the birds' performance. The group with 200g of Activo /US ton of feed showed similar performance levels than the positive control group supplemented with AGP. Figure 1: Dose-dependent effects of for coccidiosis vaccinated broilers Study IV: Evaluation of the dose-dependent effects of Activo for laying hens Animals: 40 hens; age: week 20 to 43 Feed: basal diet for laying hens Treatments: - No supplement (negative control) - 100 mg of Activo/ kg of feed - 250 mg of Activo/ kg of feed - 500 mg of Activo/ kg of feed - 5.000 mg of Activo/ kg of feed Parameters: weight gain, feed intake, egg production, feed conversion ratio, health status Duration: 168 days of feeding period **Results**: The laying hens showed a higher laying rate when fed with a higher concentration of phytomolecules (Figure 2). Similarly improved results were observed for the feed efficiency. The more phytogenic premix added to their diet the better feed efficiency (Figure 3). Figure 2: Dose-dependent effects of Activo on laying rate in laying hens Figure 3: Dose-dependent effects of Activo on feed efficiency in laying hens In conclusion, all four studies indicate that the inclusion of phytomolecules in broilers' and laying hens' diet improves their performance. Increasing levels of a phytogenic premix (Activo) significantly increased the production parameters for both groups. These improvements might bring performance in antibiotic-free poultry production on par with previous performance figures achieved with antimicrobial growth promoters. The studies also showed that microencapsulated phytogenic premixes are safe when used in dose ranges recommended by the suppliers. No negative effects on animal health could be observed even at a 100 fold / 50 fold of the recommended inclusion rate in diets for broiler or laying hens, respectively. Thanks to their positive influence on intestinal health, phytomolecules thus boost poultry performance in a safe and effective way. By Technical Team, EW Nutrition #### Literature Alanis, Alfonso J. "Resistance to Antibiotics: Are We in the Post-Antibiotic Era?" Archives of Medical Research 36, no. 6 (October 08, 2005): 697-705. doi:10.1016/j.arcmed.2005.06.009. Borda-Molina, Daniel, Jana Seifert, and Amélia Camarinha-Silva. "Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome." Computational and Structural Biotechnology Journal 16 (March 15, 2018): 131-39. doi:10.1016/j.csbj.2018.03.002. <u>Diaz-Sanchez, Sandra, Doris Dsouza, Debrabrata Biswas, and Irene Hanning. "Botanical Alternatives to Antibiotics for Use in Organic Poultry Production." Poultry Science 94, no. 6 (June 2015): 1419-430. doi:10.3382/ps/pev014.</u> Du, Encun, Weiwei Wang, Liping Gan, Zhui Li, Shuangshuang Guo, and Yuming Guo. "Effects of Thymol and Carvacrol Supplementation on Intestinal Integrity and Immune Responses of Broiler Chickens Challenged with Clostridium Perfringens." Journal of Animal Science and Biotechnology 7, no. 19 (March 22, 2016). doi:10.1186/s40104-016-0079-7. Gao, Pengfei, Chen Ma, Zheng Sun, Lifeng Wang, Shi Huang, Xiaoquan Su, Jian Xu, and Heping Zhang. "Feed-additive Probiotics Accelerate Yet Antibiotics Delay Intestinal Microbiota Maturation in Broiler Chicken." Microbiome 5, no. 1 (August 03, 2017). doi:10.1186/s40168-017-0315-1. Khan, Rosina, Barira Islam, Mohd Akram, Shazi Shakil, Anis Ahmad Ahmad, S. Manazir Ali, Mashiatullah Siddiqui, and Asad Khan. "Antimicrobial Activity of Five Herbal Extracts Against Multi Drug Resistant (MDR) Strains of Bacteria and Fungus of Clinical Origin." Molecules 14, no. 2 (February 04, 2009): 586-97. doi:10.3390/molecules14020586. Manafi, Milad, Mahdi Hedayati, Saeed Khalaji, and Mohammad Kamely. "Assessment of a Natural, Non-antibiotic Blend on Performance, Blood Biochemistry, Intestinal Microflora, and Morphology of Broilers Challenged with Escherichia Coli." Revista Brasileira De Zootecnia 45, no. 12 (December 2016): 745-54. doi:10.1590/s1806-92902016001200003. Photo source: Aviagen # Secondary Plant Compounds (SPC's) to reduce the use of antibiotics? Initial in vitro trials give reason for hope #### **Antibiotic Resistance** Some bacteria, due to mutations, are less sensitive to certain antibiotics than others. This means that if certain antibiotics are used, the insensitive ones survive. Because their competitors have been eliminated, they are able to reproduce better. This resistance can be transferred to daughter cells by means of "resistance genes". Other possibilities are the intake of free DNA and therefore these resistance genes from dead bacteria 1, through a transfer of these resistance genes by viruses 2 or from other bacteria by means of horizontal gene transfer 3 (see figure 1). Every application of antibiotics causes a selection of resistant bacteria. A short-term use or an application at a low dosage will give the bacteria a better chance to adapt, promoting the generation of resistance (Levy, 1998). #### Antibiotics are promoting the development of resistance: Pathogenic bacteria possessing resistance genes are conserved and competitors that do not - possess these genes are killed - Useful bacteria possessing the resistance genes are conserved and serve as a gene pool of antibiotic resistance for others - Useful bacteria without resistance, which probably could keep the pathogens under control, are killed #### Reducing the use of antibiotics | | Activo Liquid | | | | |---|---------------|----|----|--| | Central Poultry Diagnostic Laboratory,
Kondapur, Hyderabad (India) | 10% | 2% | 1% | | | E. coli (reference strains) | ++ | + | + | | | Proteus vulgaris (reference strains) | + | + | + | | | Pseudomonas <u>fluorescens</u> | ++ | + | - | | | Salmonella <u>pulmorum</u> | ++ | ++ | + | | | Salmonella gallinarum | ++ | ++ | + | | | Staphylococcus aureus (reference strains) | +++ | ++ | ++ | | | - no effect + growth inhibiting ++ bactericidal | | | | | Table 1: Effect of Activo Liquid against standard pathogens Ingredients from herbs and spices have been used for centuries in human medicine and are now also used in modern animal husbandry. Many SPC's have antimicrobial characteristics, e.g. Carvacrol and Cinnamon aldehyde. They effectively act against Salmonella, *E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae*, Entero- and *Staphylococcus*, and *Candida albicans*. Some compounds influence digestion, others act as antioxidants. Comprehensive knowledge about the single ingredients, their possible negative but also positive interaction (synergies) is essential for developing solutions. Granulated or microencapsulated products are suitable for addition to
feed, liquid products would be more appropriate for an immediate application in the waterline in acute situations. #### SPC's (Activo Liquid) against livestock pathogens in vitro In "agar diffusion tests", the sensitivity of different strains of farm-specific pathogens was evaluated with different concentrations of Activo Liquid. The effectiveness was determined by the extent to which they prevented the development of bacterial overgrowth. The larger the bacteria-free zone, the higher the antimicrobial effect. In this trial, Activo Liquid showed an antimicrobial effect on all bacteria tested. The degree of growth inhibition positively correlated with its concentration. Table 1: Inhibition of field isolated standard pathogens by different concentrations of Activo Liquid #### Activo Liquid against antibiotic resistant field pathogens in vitro | | Activo Liquid | | | | |---|---------------|------|------|----| | Laboratory: Vaxxinova, Münster, Germany | 0.1% | 0.2% | 0.4% | 1% | | E.coli Reference
ATCC25922 | + | ++ | ++ | ++ | | ESBL I (Pig) | - | ++ | ++ | ++ | | ESBL 2 (Pig) | ± | ++ | ++ | ++ | | ESBL 3 (Poultry) | ± | ++ | ++ | ++ | | ESBL 4 (Poultry) | - | ++ | ++ | ++ | | S. aureus Referenz ATCC29213 | - | + | ++ | ++ | | MRSA I (Pig) | - | + | ++ | ++ | | MRSA 2 (Pig) | - | + | + | ++ | | - no. effect + growth inhibiting
± bacteriostatis. ++ bactericidal | | | | | Table 2: Effect of Activo Liquid against field-isolated standard pathogens It cannot be excluded that resistant pathogens not only acquired effective weapons to render antibiotics harmless to them but also developed general mechanisms to rid themselves of otherwise harmful substances. In a follow-up laboratory trial, we evaluated whether the Activo Liquid composition is as effective against ESBL producing E. coli and Methicillin resistant S. aureus (MRSA) as to non-resistant members of the same species. Trial Design: Farm isolates of four ESBL producing E. coli and two MRSA strains were compared to nonresistant reference strains of the same species with respect to their sensitivity against Activo Liquid. In a Minimal Inhibitory Concentration Assay (MIC) under approved experimental conditions (Vaxxinova Diagnostic, Muenster, Germany) the antimicrobial efficacy of Activo Liquid in different concentrations was evaluated. The efficacy of SPC's (Activo Liquid) against the tested strains could be demonstrated in a concentration-dependent manner with antimicrobial impact at higher concentrations and bacteriostatic efficacy in dilutions up to 0,1% (ESBL) and 0,2% (MRSA)(table 2). #### **Conclusion:** To contain the emergence and spread of newly formed resistance mechanisms it is of vital importance to reduce the use of antibiotics. SPC's are a possibility to <u>decrease antibiotic use</u> especially in pro- and metaphylaxis, as <u>they show good efficacy against the common pathogens</u> found in poultry, even against resistant ones. I. Heinzl # Secondary plant compounds are the new frontier in poultry nutrition Why should you read another story about phytogenics? Or, is it botanicals, spices, herbs, and extracts? No matter what we call them, scientists have named them <u>"secondary plant compounds"</u>, and if we are to follow the American tradition we can call them SPC. Then, here is the first interesting thing we can discuss about this plant-derived class of active compounds. They are "secondary" in nature, but not insignificant. They play no role in normal metabolism, but they help plants (and now animals) survive under adverse conditions. Perhaps, this is why some experts consider them as the next frontier in poultry nutrition. With poultry that are raised in less than ideal conditions, especially when we consider the movement towards antibiotic reduction (for growth promoting reasons, not complete removal of all medicines), we understand that such natural compounds can be of significant help. As it happens, the majority of poultry specialists in Europe and increasingly in the Americas consider SPC as an almost-essential element in diets for broilers and layers (and turkeys, ducks, and all poultry for that matter) when birds are raised without antibiotics. Some go even further and use them along with antibiotics because, as we all know, antibiotics are never 100% efficient as bacteria sooner or later develop some form of resistance. Such resistance has not yet been observed with SPC. So if one is to use SPC in poultry feds, which ones to buy? A quick glance at the market will reveal more commercial products than can possibly be imagined. Some must be better than the rest, but how can we separate the wheat from the chaff? Price alone is not always a good indicator. A high quality product must be expensive – for there is no such thing as a free lunch – but all expensive products are not always of the highest possible quality! There are three basic criteria, which we can mention briefly here: - 1. **SPC are volatile** at least most of them. As such, unprotected products will soon evaporate if left in the open air as it happens with feed prepared in commercial farms. So, some form of protecting SPC is essential. - 2. **SPC are innumerable** so finding the right mix for the job required is important. You cannot get the same results with any kind of mix. So, in designing an SPC mix, the manufacturer must declare and have knowledge of the target to be accomplished. - 3. **SPC are powerful** meaning you cannot just keep adding as much as possible. Here finding the exact dosage for the right purpose is a difficult balancing exercise. So, the right mix <u>and</u> the right dosage must be combined, otherwise animals will refuse the feed (worst case scenario) or just fail to benefit from SPC inclusion. There is so much more to learn about this exciting class of compounds that can replace the growth promoting action of antibiotics that it is worth spending time learning more about them. ## Secondary plant compounds against antibiotic-resistant E. coli Due to incorrect therapeutic or preventive use of antibiotics in animal production as well as in human medicine, occurrence of antibiotic resistant pathogens has become a widespread problem. Enterobacteria in particular (e.g. Salmonella, Klebsiella, E. coli) possess a special mechanism of resistance. By producing special enzymes (ß-lactamases), they are able to withstand the attack of so-called ß-lactam antibiotics. The genes for this ability (resistance genes) can also be transferred to other bacteria resulting in a continuously increasing problem. Divers point mutations within the ß-lactamase genes lead to the occurrence of "Extended-Spectrum-Beta-Lactamases" (ESBL), which are able to hydrolyse most of the ß-Lactam-antibiotics. AmpC Beta-Lactamases (AmpC) are enzymes, which express a resistance against penicillins, cephalosporins of the second and third generation as well as cephamycins. #### What are ß-lactam antibiotics? The group of ß-lactam antibiotics consists of penicillins, cephalosporins, monobactams and carbapenems. A characteristic of these antibiotics is the lactam ring (marked in orange): #### Mode of action of B-lactam antibiotic If a bacterial cell is growing, the cell wall also has to grow. For this purpose, existing conjunctions are cracked and new components are inserted. ß-lactam-antibiotics disturb the process of cell wall construction by blocking an enzyme needed, the transpeptidase. If crosslinks necessary for the stability of the cell wall cannot be created, the bacteria cannot survive. Resistant bacteria, which are able to produce ß-lactamases, destroy the ß-lactam antibiotics and prevent their own destruction. #### Secondary plant compounds Secondary plant compounds and their components are able to prevent or slow down the growth of moulds, yeasts, viruses and bacteria. They attack at various sites, particularly the membrane and the cytoplasm. Sometimes they change the whole morphology of the cell. In the case of gram-negative bacteria, secondary plant compounds (hydrophobic) have to be mixed with an emulsifier so that they can pass the cell wall which is open only for small hydrophilic solutes. The modes of action of secondary plant compounds depend on their chemical composition. It also depends on whether single substances or blends (with possible positive or negative synergies) are used. It has been observed that extracts of spices have a lower antimicrobial efficacy than the entire spice. *For simplicity, only two layers of peptidoglycans (NAM-NAG) are shown. Normally the cell wall consists of many layers. The best explained mode of action is the one of thymol and carvacrol, the major components of the oils of thyme and oregano. They are able to incorporate into the bacterial membrane and to disrupt its integrity. This increases the permeability of the cell membrane for ions and other small molecules such as ATP leading to the decrease of the electrochemical gradient above the cell membrane and to the loss of energy equivalents of the cell. #### Trial (Scotland) #### Desian Two strains of ESBL-producing and AmpC respectively, isolated from the field, a non-resistant strain of E. coli as control. Suspensions of the strains with 1×10^4 KBE/ml were incubated for 6-7 h at 37°C together with different concentrations of <u>Activo Liquid</u> or with cefotaxime, a cephalosporin. The suspensions were then put on LB-Agar plates and bacteria colonies were counted after a further 18-22h incubation at 37°C. Evaluation of the effects of Activo Liquid on ESBL-producing as well as on E. coli resistant for aminopenicillin and cephalosporin (AmpC) #### Results The antimicrobial efficacy of the blend of secondary plant compounds depended on concentration with bactericidal effect at higher concentrations and bacteriostatic at dilutions up to 0,1%. It is also possible that bacteria could develop a resistance to secondary
plant compounds; the probability is however relatively low, due to the fact that essential oils contain hundreds of chemical components (more than antibiotics) making it difficult for bacteria to adapt. ## Phytogenics can positively influence the efficacy of #### antibiotics Many veterinary antibiotics are applied via the waterline, where they are dosed in combination with other feed additives. Amongst those are mixtures of secondary plant compounds with a proven antimicrobial efficacy against veterinary pathogenic bacteria. However, little research has been done to evaluate any effect that antibiotics and phytogenics may have on each other. A possible influence of phytogenics on the efficacy of antibiotics through the combined administration would require a change in application recommendations of antibiotics and phytogenic feed additives. In the case of no interaction, no changes would be necessary. If they were to interact in a positive way, the dosages could be lowered and if they interact in a negative way, a combined application would be avoided. #### Antibiotics and SPC's in co-incubation There are different groups of antibiotics depending on the chemical structure and on the pathogen they target. Some impair the cell wall or the cytoplasmic membrane (polymyxins, ß-lactam antibiotics) and some affect protein synthesis (macrolides, Chloramphenicol, Lincospectin, tetracyclines, aminoglycosides). Others compromise DNA and RNA synthesis (fluorchinolones, ansamycines) and some disturb the metabolism of e.g. folic acid (Trimethoprim). The intention of a trial with these different groups of antibiotics was to evaluate possible interactions they may have with a combination of secondary plant compounds. Four ESBL producing *E. coli* field isolates from poultry flocks were experimentally assessed as well as a ß-lactamase positive and a ß-lactamase negative reference strain as quality control strains for antimicrobial susceptibility testing. Two-fold serial dilutions of antibiotics and the liquid product based on secondary plant compounds were coincubated in a checkerboard assay. The highest concentration of the antibiotic was chosen according to CLSI standard recommendations. The control of the serial dilution of SPC's was made without antibiotics and vice versa. #### Lowering the antibiotic dosage by the use of SPC's In the experiment all field isolates proved resistant against the ß-lactam antibiotics, two field isolates and one reference strain were resistant against tetracyclines and macrolides and one field isolate and one reference strain against aminoglycocides. The results showed that there was no negative influence of the antibiotics on the SPC's and vice versa. Moreover, for several classes of antibiotics an additive to synergistic effect was observed to such an extent that an antibiotic effect could be achieved with half or even one quarter of the former effective dosage. The dosage of the SPC-mixture could also be reduced. Based on the results of this *in vitro* experiment it can be stated that in the case of antibiotic resistance, the option exists to apply a phytogenic product with broad antimicrobial efficacy. Even more, for most combinations between antibiotics and <u>Activo Liquid</u>, a defined mixture of secondary plant compounds, their combined use potentiates the individual efficacy of either compound class against *E.coli* strains *in vitro*. This adds further benefits to the improvements in animal performance and health, for which a number of <u>phytogenic feed additives have already proven effective</u>.