“A good start is half the battle” can be said if we talk about piglet rearing. For this promising start, piglets must eat solid feed as soon as possible to be prepared for weaning. Dr. Jan Fledderus, Product Manager and Consultant at the S&C team at Schothorst Feed Research, shows some nutritional measures that can be taken to keep piglets healthy and facilitate the critical phase of weaning.
Higher number of low-birth-weight pigs in larger litters
Litter size affects piglet quality. Larger litter sizes from hyperprolific sows often result in higher within-litter variation in birth weights. This variability can lead to a higher proportion of low-birth-weight piglets, which are more susceptible to health issues and have lower survival rates. Additionally, low birthweight pigs have an increased risk of mortality, and an improvement in birth weight from 1kg to 1.8 kg can result in 10 kg more body weight at slaughter.
Figure 1: Effect of litter size on birth weight distribution (Schothorst Feed Research Data were collected from 2011 to 2020, based on 114,984 piglets born alive from 7,952 litters).
Implementing management practices for low-birth-weight pigs, such as split suckling, can significantly enhance nutrient intake, support immune function, and ultimately contribute to better survival rates and overall health for these vulnerable piglets.
Weaning age determines intake of creep feed
Pigs that consume creep feed before weaning restart faster to eat, have a higher feed intake, and less diarrhea after weaning. For instance, in a field trial, pigs that consumed feed 10 days before weaning had a 62% incidence of diarrhea, whereas in pigs that consumed feed only 3 days pre-weaning, diarrhea incidence increased to 86%.
Figure 2: Influence of age on the percentage of pigs consuming creep feed
“As age is the most critical factor for a high percentage of pigs eating before weaning, there is a trend in the EU to increase the weaning age, where some farmers go to 35 days,” remarked Dr. Fledderus.
Furthermore, weaning age is positively correlated with weaning weight. Every day older at weaning improves post-weaning performance and reduces health problems.
Feed management
Creep feed for 7-10 days pre-weaning is essential, not to increase total feed intake, but to train the piglet to eat solid feed to avoid the ‘post-weaning dip.’ After about 15 days of age, piglets can consume more than is provided by milk alone. Dr. Fledderus strongly recommended creep feeding for at least one week before weaning. “Consuming feed before weaning will result in fewer problems with post-weaning diarrhea,” he said.
In addition to creep feeding, a transition diet, from 7 days pre- and 7 days post-weaning, is advised. The composition or form of the transition diet should not be changed.
The key objective of post-weaning diets is to achieve a pH of 2-3.5 in the distal stomach. Pepsin, the primary enzyme responsible for protein digestion, is activated at a pH of around 2.0. Its activity declines significantly at a pH above 3.5, which can lead to poor protein digestion and nutrient absorption.
Fiber as a functional ingredient
Fiber was previously considered a nutritional burden or diluent, but now it is regarded as a functional ingredient. Including dietary fiber, mainly inert fiber such as rice or wheat brans, can increase the retention time of the digesta in the stomach. This extended retention allows for more prolonged contact between digestive enzymes and nutrients, facilitating improved digestion and absorption of proteins and other nutrients. Not only is pH reduced, but because more proteins are hydrolyzed to peptides, there is less undigested protein as a substrate for the growth of pathogenic bacteria and the production of toxic metabolites in the hindgut.
“Size of fiber particles also matters,” said Dr. Fledderus. Coarse wheat bran particles (1,088 μm) have been shown to be more effective than finer particles (445 μm) in reducing E. coli levels in the gut. The larger particle size helps prevent E. coli from binding to the intestinal epithelium, allowing these bacteria to be excreted rather than colonizing the gut.
The understanding of dietary fiber’s role in pig nutrition has evolved, with recent findings indicating that fiber can actually increase feed intake in piglets, contrary to earlier beliefs that it might decrease intake. High-fiber diets often increase feed intake as pigs compensate for lower energy density. This can help maintain growth rates when formulated correctly.
EW Nutrition’s Swine Academy took place in Ho Chi Minh City and Bangkok in October 2024. Dr. Jan Fledderus, Product Manager and Consultant at the S&C team at Schothorst Feed Research, one of the founders of the Advanced Feed Package and with a strong focus on continuously improving the price/quality ratio of the diets for a competitive pig sector, was a reputable guest speaker in these events.
Nutritional strategies to maximize the health and productivity of sows
Conference Report
During lactation, the focus should be on maximizing milk production to promote litter growth while reducing weight loss of the sow, stated Dr. Jan Fledderus during the recent EW Nutrition Swine Academies in Ho Chi Minh City and Bangkok. A high body weight loss during lactation negatively affects the sow’s performance in the next cycle and impairs her longevity.
Milk production – ‘push’ or ‘pull’?
“Is a sow’s milk production driven by “push” – the sow is primarily responsible for milk production, or “pull” – suckling stimulates the sow to produce milk?” asked Dr. Jan Fledderus at the beginning of his presentation. The answer is that it is primarily a pull mechanism: piglets that suckle effectively and frequently can activate all compartments of the udder, leading to increased milk production. Therefore, the focus should be optimizing piglet suckling behavior (pull) to enhance milk production. This highlights the importance of piglet vitality and access to the udder in maximizing milk yield.”
Modern sows are lean
Modern sows have been genetically selected for increased growth rates and leanness, which alters their body composition. This makes traditional body condition scoring (BCS) methods, which rely on subjective visual assessment and palpation of backfat thickness, less effective. This may not accurately represent a sow’s true condition, especially in leaner breeds where muscle mass is more prominent than fat. Technology, such as ultrasound measurements of backfat and loin muscle depth, provide more accurate assessments of body condition and can help quantify metabolic reserves more effectively than visual scoring.
Due to their increased lean body mass, we must consider adjusted requirements for amino acids, energy, digestible phosphorus, and calcium. Their dietary crude protein and amino acid requirements have increased drastically.
Importance of high feed intake for milk production
Sows typically catabolize body fat and protein to meet the demands of milk production. Adequate feed intake helps reduce this catabolism, allowing sows to maintain body condition while supporting their piglets’ nutritional needs.
Feeding about 2.5kg on the day of farrowing ensures that sows receive adequate energy to support the farrowing process and subsequent milk production. Sows that are well-fed before farrowing tend to have shorter farrowing durations due to better energy availability during labor.
A short interval between the last feed and the onset of farrowing (3 hours) has been shown to significantly reduce the probability of both assisted farrowing and stillbirths without increasing the risk of constipation. To enhance total feed intake, feeding lactating sows at least three times a day is helpful.
Dr. Fledderus recommended a gradual increase in feed intake during lactation, then from day 12 of lactation to weaning, feeding 1% of sow’s bodyweight at farrowing + 0.5 kg/piglet. For example, for a 220kg sow with 12 piglets:
(220 kg x 0.01) + (12 x 0.5 kg) = 2.2 +6 = 8.2 kg total daily feed intake
Energy source – starch versus fat
The choice between starch and fat as an energy source in sow diets has substantial implications for body composition and milk production.
Starch digestion leads to glucose release, stimulating insulin secretion from the pancreas. Insulin is essential for glucose uptake and utilization by tissues. Enhanced insulin response can help manage body weight loss by promoting nutrient storage and reducing the mobilization of the sow’s body reserves.
Sows fed diets with a higher fat supplementation had an increased milk fat, which is crucial for the growth and development of piglets.
Table 1: Effect of energy source (starch vs. fat) on sows’ body composition and milk yield (Schothorst Feed Research)
The optimum temperature for lactating sows is 18oC. A meta-analysis concluded that each 1°C above the thermal comfort range (from 15° to 25°C) leads to a decrease in sows’ feed intake and milk production and weaning weight of piglets, as shown below.
Effect of heat stress on lactating sows (according to Ribeiro et. al., 2018 Based on 2,222 lactating sows, the duration of lactation was corrected to 21 days)
To mitigate the effects of heat stress, which reduces feed intake, it is beneficial to schedule feeding during cooler times of the day. This strategy helps maintain appetite and ensures that sows consume sufficient nutrients for milk production. Continuous access to cool, clean water can also enhance feed consumption.
Pigs produce much heat, which must be “excreted”. Increased respiratory rate (>50 breaths/minute) has been shown to be an efficient parameter for evaluating the intensity of heat stress in lactating sows.
When sows resort to panting as a mechanism to dissipate heat, this rapid breathing increases the loss of carbon dioxide, resulting in respiratory alkalosis. To prevent a rise in blood pH level, HCO3 is excreted via urine, and positively charged minerals (calcium, phosphorous, magnesium, and potassium) are needed to facilitate this excretion. However, these minerals are crucial for various physiological functions. As their loss can lead to deficiencies that affect overall health and productivity, this mineral loss must be compensated for.
Implications for management
Implementing effective nutritional strategies together with robust management practices is crucial for maximizing the health and productivity of sows. The priority is to stimulate the sow to eat more. This not only enhances milk production and litter growth but also supports the overall well-being of the sow. Regularly assessing sow performance metrics – such as body condition score, feed intake, and litter growth – can help identify areas for improvement in nutritional management.
EW Nutrition’s Swine Academy took place in Ho Chi Minh City and Bangkok in October 2024. Dr. Jan Fledderus, Product Manager and Consultant at the S&C team at Schothorst Feed Research, with a strong focus on continuously improving the price/quality ratio of the diets for a competitive pig sector and one of the founders of the Advanced Feed Package, was a reputable guest speaker in these events.
Health management of nursery piglets through nutrition
Conference Report
An optimized gut function is essential for pigs’ overall health and performance. When managed correctly, gut health can significantly enhance growth, immunity, and productivity. However, if gut health is compromised, it can lead to lifetime negative impacts on a pig’s performance.
Early feed intake enhances GIT development
Dr. Edwards emphasized that good health and performance in the nursery are closely linked to maintaining feed intake, which is essential for developing stomach capacity and function. A larger stomach capacity increases the exposure to digestive enzymes and prolongs stomach dwell time.
Acid output takes time to develop and develops in response to substrate. It directly influences stomach pH and is closely related to pepsin output, which, on its part, influences protein digestibility and the risk of diarrhea.
Protein and immunity
Protein is a double-edged sword, warned Dr. Edwards:
Excess or undigested protein can create inflammation and oxidative stress in the body. This occurs when the metabolism of surplus protein leads to the production of reactive oxygen species (ROS), which can damage cells and tissues, further exacerbating inflammatory responses. Chronic inflammation may impair immune responses, making pigs more susceptible to infections and diseases.
On the other hand, a deficiency in amino acids can limit immune response. Amino acids do more than build muscle – they are critical for synthesizing antibodies and other immune-related proteins. Without adequate levels, pigs may struggle to mount effective immune responses, increasing their vulnerability to pathogens.
Table 1: Effects of amino acids on pig gut health and functions (Yang & Liao, 2019)
Metabolic fuel for rapidly dividing cells, including lymphocytes, enterocytes
maintains or enhances villus height/crypt depth
enhances microbial diversity
is utilized to synthesize GSH and protect against oxidative stress
stimulates both innate and adaptive immunity
Arginine
promotes intestinal healing and reverses intestinal dysfunction
has anti-inflammatory effects
Cysteine
is utilized to synthesize GSH (antioxidant)
utilized to synthesize taurine (antioxidant/cell membrane stabilizer)
utilized for mucin synthesis (physical protection)
Threonine
utilized for mucin synthesis
important component of immunoglobulins
enhances microbial diversity
Glycine
anti-inflammatory effects
utilized to synthesize GSH (antioxidant)
Methionine
acts as an antioxidant by protecting other proteins against oxidative damage
important for the proliferation of lymphocytes
Diets should be formulated to all ten essential amino acids (arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine) while ensuring a ratio of about 50:50 for essential amino acids to non-essential amino acids is optimal for nitrogen retention and utilization in pigs.
During immune challenges, the pig’s amino acid requirements, including methionine, cysteine, tryptophan, threonine, and glutamine, increase relative to lysine. Well-known examples are threonine, a key component of mucin (and immunoglobulins), supporting gut health and integrity during stress, and glutamine, a major energy source for rapidly dividing cells in the immune system.
Microbiome evolution and modulation
The microbiota of the pig evolves from birth up to about 20 weeks of age. The alpha diversity (the number of species) and species richness increase with age. The pig microbiome consists of both permanent members that establish stable populations throughout life and transient members that may fluctuate based on dietary changes or environmental factors.
Microbiome modulation through the diet
Diet can influence the rate and maturity of microbiota evolution. For instance, diets rich in fiber and specific carbohydrates can promote the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium. In contrast, diets high in protein can increase potentially harmful bacteria if not appropriately balanced.
Understanding these dynamics is critical for optimizing nutrition strategies that support gut health and overall performance in pigs. Proper management of dietary components can lead to healthier microbiomes, enhancing nutrient absorption and immune responses throughout the pig’s life.
The following strategies accelerate the maturation of the microbiome, the gut, and the immune system:
Promoting and maintaining feed intake: consistent feed intake is crucial for microbial development. Early access to solid feed helps establish a diverse microbiome.
Raw material continuity: variability in feed composition can disrupt microbial communities, leading to dysbiosis. A step-wise approach to diet changes, with a broad range of ingredients at low inclusion levels, is recommended.
Regulating digest transit time: the rate at which digesta moves through the gastrointestinal tract affects nutrient absorption and microbial colonization. Strategies to optimize transit time, such as increasing particle size and incorporating insoluble fibers, can enhance nutrient digestibility and promote a healthy microbiome by allowing beneficial microbes to thrive.
Feeder access: adequate access to feeders encourages regular feeding behavior, supporting consistent nutrient intake and microbial activity. Frequent feeding can help maintain stable gut conditions conducive to microbial growth.
Inert fiber: helps maintain gut motility and provides substrates for beneficial bacteria, contributing to a balanced microbiome.
Minimizing stress: stress can negatively impact gut integrity and microbial balance, increasing susceptibility to infections and other health issues.
Limiting the use of antibiotics helps preserve the natural gut microbiota, which is essential for maintaining health and preventing disease. The use of antibiotics can lead to dysbiosis, making pigs more vulnerable to infections and impairing immune responses.
Limitations in the use of AGPs, Zn, and Cu require rethinking in pig nutrition
Reduced access to in-feed antibiotics and pharmacological levels of zinc and copper have exposed nutritional shortcomings for nursery pigs. Preventive strategies through nutrition, carefully designed diets, and optimal use of eubiotics and functional ingredients are the keys to getting pigs off to a healthy and efficient start.
Nursery nutrition programs should be designed for long-term gut health, efficiency, and functionality. The level of investment will depend on the weaning age/weight, health status, labor quality, etc., noted Dr. Edwards.
EW Nutrition’s Swine Academy took place in Ho Chi Minh City and Bangkok in October 2024. Dr. Megan Edwards, an Australian animal nutrition consultant with global research and praxis experience and a keen interest in immuno-nutrition and functional nutrients, was an esteemed guest speaker at this event.
Rearing pigs without antibiotics
Conference Report
Holistic management is essential for successfully rearing pigs, particularly in systems that aim to minimize antibiotics. The method emphasizes the interconnectedness of various factors contributing to sustainable pig health and productivity. Some of the key components of this holistic management were discussed by Dr. Seksom.
Sow lifetime productivity
Suggested targets for sow lifetime productivity are
>70 marketed fattening pigs
At least 6 parities with at least 10.5 pigs marketed per parity
25 fattening pigs/sow/year (2.4 parities/year x 10.5 fattening pigs)
To achieve these targets, we need 29.2 born alive piglets/sow/year (or 12.2 born alive piglets/parity), and it is essential to control losses during each production period: <10% pre-weaning, <3% during nursery, and <2% in fattening.
Since the occurrence of African swine fever (ASF), with improved genetics, we can now produce pigs with 120 kg+ bodyweight at slaughter without carcass problems and reach about 3 tons of bodyweight/sow/year, compared to around 2 tons before.
Modern pig genetics and subsequent problems
Despite the advancements in modern pig genetics leading to improved production and bigger litters, several ensuing problems have emerged:
Less average body weight of piglets at birth
Large number of piglets born with less than 1.0 kg (target <5%)
High pre-weaning mortality
High post-weaning mortality and morbidity
Dr. Seksom highlighted that birthweights decrease with increasing sow prolificacy. He stated that “piglets should be divided into groups with similar body weights at weaning” and that “a key objective for successful weaning is a piglet that weighs a minimum of 6-6.5 kg at three weeks of age, and that less than 25% of the piglets have a weight of ≤5.9 kg.”
Sow body condition
Sows should be fed to feed to body condition score (BCS), not a fixed amount of feed. Ideally, the sows have a BCS of 2.75 (the sow’s backbone is visible, and the tips of the short ribs can be felt but are smooth) or 3.0 (well-rounded appearance, hips, and spine can only be felt with firm pressure) at 12 weeks of pregnancy, so we can feed more in the last month to achieve a BCS of 3-3.25 at farrowing. This is essential to ensure that sows have sufficient energy reserves for lactation and overall health.
Target body condition score – 2.75 at three months of gestation
Feed intake must be increased gradually during the last month of gestation as most fetal growth and mammary gland development occur during this period. This may involve raising energy-dense feeds or adjusting protein levels as needed.
Dr. Seksom stressed that “nutrition is not just the feed; it’s about feeding as well. To feed sows to BCS, assessments of BCS should be done regularly throughout gestation, ideally every 2-4 weeks. This allows for timely adjustments in feeding based on individual sow’s needs. Ensure that staff are trained one-on-one to accurately assess the body condition of sows. This includes recognizing the visual and tactile indicators of different scores and understanding how BCS impacts reproductive performance, longevity, and overall farm profitability.”
After farrowing, the sows must be monitored closely for any signs of excessive weight loss and feeding strategies adjusted accordingly to support recovery and lactation needs.
Piglet diarrhea
Many factors cause diarrhea and must be thoroughly investigated. For bacteria-caused diarrhea, Dr. Seksom advised a good hygiene program, whereas for viral causes, a vaccination program is essential. However, he emphasized that “for a vaccination program, you can’t just copy from another farm; it needs to be created specifically using the titers for diseases on your farm.”
Swine influenza is an often-overlooked cause of diarrhea in piglets. While it is primarily recognized for causing respiratory issues, the virus can also lead to scours in the first two weeks of piglets’ life. So, sows should be checked for symptoms of swine influenza (such as nasal discharge, sneezing and coughing, and inappetence) before farrowing. If necessary, they must be treated with paracetamol to reduce fever and symptoms.
The intake of an adequate quantity of colostrum is crucial for piglets to be protected during the first days of life. Best practices to ensure that piglets get 250 mL of colostrum include:
Teat access – if a sow has a large litter or is unable to nurse all her piglets effectively, consider split suckling by separating larger, more vigorous piglets from the litter for a couple of hours after birth. This allows smaller or weaker piglets better access to the udder without competition. Syringe-feeding colostrum to smaller piglets is also effective.
Early access – six hours after farrowing, the quality of colostrum begins to decline significantly. Additionally, the piglet can only absorb intact large IgG molecules, the major source of passive immunity, during the first 24 h after birth, prior to gut closure. In any case, by this time, the sow will start producing milk and not colostrum.
Sow behavior – if a sow experiences pain or discomfort from injuries caused by her piglets’ teeth, she may become less willing to allow them to nurse, leading to delays in colostrum intake. Genetic background influences maternal behavior significantly. For example, some breeds exhibit stronger maternal instincts and better nursing
behaviors than others. Selecting sows with proven good maternal traits can lead to improved outcomes in piglet survival and growth.
Drafts – newborn piglets are born with low fat reserves and are highly susceptible to hypothermia. Drafts significantly impact the effective temperature experienced by piglets.
Staff training – Staff must be trained to recognize signs of distress in both sows and piglets; training in techniques enables them to assist with nursing and feeding, which is crucial for timely interventions.
Weaning is a process, not just a one-time event
Research has shown that heavier piglets at weaning have better lifetime performance than lighter ones. Weaning weight is a more accurate indication of post-weaning growth than either birth weight or age. It is, therefore, important to establish the weaner immediately post-weaning to maintain growth rates, reduce pen variation, and lessen the amount of ‘tail-enders’ at the point of sale.
Dr. Seksom emphasized that “viewing weaning merely as a single event, rather than a process, overlooks the complexities involved in ensuring a smooth transition for the animals. He advocated for a comprehensive approach to weaning that includes the shown well-planned steps to support piglets during this critical phase. If the weaning process is managed effectively, you can significantly reduce the need for antibiotics.”
Conclusion
“By integrating these holistic management strategies, pig producers can effectively raise pigs without antibiotics while promoting animal health, improving productivity, and addressing consumer concerns about antibiotic use in livestock production,” summarized Dr. Seksom.
EW Nutrition’s Swine Academy took place in Ho Chi Minh City and Bangkok in October 2024. Dr. Seksom Attamangkune, a leading expert in the nutrition and management of pigs in tropical conditions and former Head of the Animal Science Department and Dean of the Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, was a reputable guest speaker at this event.
EU Agricultural Outlook 2024-2035: Projected Trends and Challenges
by Ilinca Anghelescu, Global Director Marketing & Communications, EW Nutrition
The European Union (EU) agricultural sector is confronted with challenges and uncertainties stemming from the geopolitical risks, extreme weather events, and evolving market demand. The EU Agricultural Outlook 2024-2035, published last month, highlights the anticipated trends, challenges, and opportunities facing the sector over the medium term, given several considerations likely shaping the future.
Initial considerations for EU agricultural trends
Macroeconomic context
The EU’s real GDP growth is expected to stabilize, contributing to a stable economic environment for agriculture. Inflation rates are projected to return to the European Central Bank’s target of 2% by 2025. Exchange rates will see the Euro slightly appreciating against the US dollar, and Brent crude oil prices are anticipated to stabilize in real terms at approximately $102 per barrel by 2035.
However, despite optimistic declarations in the recent past, we have not solved world hunger. Population growth in lower-income parts of the world is leading to an unequal distribution and, after an initial dip, the number of people going to bed hungry is expected to rise again. Moreover, in the next ten years some improvements are foreseen but no massive changes are expected in the percentage of food groups and calories available per capita.
Climate change impact
Climate change is reshaping EU agriculture by affecting critical natural resources such as water and soil. Agroclimatic zones are shifting northwards, with implications for crop cultivation patterns. For example, regions traditionally suitable for wheat may increasingly shift focus to other crops better adapted to new climate conditions.
Consumer demand
Consumer awareness of sustainability is driving significant shifts in dietary preferences in the EU. The demand for plant proteins like pulses is increasing, while meat consumption, particularly beef and pork, is declining due to environmental and health concerns. Conversely, demand for fortified and functional dairy products is on the rise.
What are the projected agricultural trends in 2024-2035?
Arable crops
Land use: While the total agricultural land in the EU remains stable, a shift in crop focus is anticipated. Land allocated for cereals and rapeseed is expected to decline, making way for soya beans and pulses due to reduced feed demand and policy incentives for plant proteins.
Cereals: Production of cereals, including wheat, maize, and barley, is forecast to stabilize with minor yield increases due to advancements in precision farming and digitalization. Wheat production is set to recover after an expected dip in 2024.
Dairy Sector
Milk production: Although milk yields are projected to increase due to improved genetics and farming practices, the decline in the dairy cow herd will result in a slight overall reduction in milk production by 2035.
Dairy products: The production of cheese and whey will grow steadily, driven by domestic and international demand. Conversely, the consumption of drinking milk is expected to decline, while demand for fortified and functional dairy products grows.
Meat Sector
Beef and veal: Beef production is expected to decrease by 10%, with the EU cow herd shrinking by 3.2 million head by 2035. This decline is attributed to sustainability concerns, high production costs, and changing consumer preferences. Beef consumption is also projected to decline, driven by high prices and a preference for plant-based alternatives.
Pig meat: The sector faces a projected annual production decline of 0.9%, equating to a reduction of nearly 2 million tons compared to 2021-2023 levels. This trend is largely influenced by concerns over sustainability and a declining preference for fatty meats.
Poultry: In contrast, poultry production is forecast to increase due to its healthier image, lower cost, and minimal cultural or religious constraints. However, the growth rate will be slower than in the previous decade.
Upcoming challenges in agriculture
Climate Resilience
The increasing frequency of extreme weather events requires investments in resilient farming practices. Adoption of precision farming and crop diversification is critical to mitigate climate impacts. However, if existing policies are further implemented, greenhouse gas emissions are expected to see a significant decline.
Policy Frameworks
The Common Agricultural Policy (CAP) plays a pivotal role in steering the sector toward sustainability. However, farmers face challenges in adapting to stricter environmental regulations and securing sufficient funding for transitions. The recent Mercosur agreement has already stirred dissent in EU countries that fear unfettered competition without similar policy regulations.
Market Dynamics
Global trade tensions and competition in agricultural markets pose significant risks. While the EU remains a net exporter, dependence on imports for certain crops, such as soya beans, highlights vulnerabilities in supply chains.
In a weather-shock scenario for the EU feed supply chain, the report highlights that increased feed prices would drive up retail meat prices by 10% for poultry and pork producers, and 5% for beef and veal producers. The increase would be less abrupt for retail prices, rising by 3% for pork, and 4% for poultry meat. Producers need to be mindful of the absorbed costs of these potential shocks.
Conclusion
The EU agricultural sector must continue to balance productivity, sustainability, and consumer preferences. While advancements in technology and policy frameworks offer pathways to resilience, addressing challenges such as climate change and market dynamics will be critical to achieving long-term goals.
Antimicrobial resistance in animal production workers, a serious challenge
With 73% of human-use antibiotics also used in food-animal production, antimicrobial resistance (AMR) is a pressing global health concern, particularly in contexts where humans and animals are in close proximity, such as in animal production facilities. This issue is exacerbated by the widespread use of antibiotics in livestock farming, which not only promotes resistance in bacteria but also poses direct risks to farm workers.
Antimicrobial resistance in farm workers in Denmark
In Denmark, a country renowned for its robust agricultural monitoring systems, significant strides have been made in tracking AMR. A comprehensive report from 2015 emphasized the occurrence of antimicrobial-resistant bacteria, particularly in livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA). The Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP) highlighted that farm workers frequently came into contact with these resistant pathogens, which posed occupational hazards and public health challenges (Bager et al., 2015). The program found that 88% of pigs carried LA-MRSA, and farm workers had significantly elevated exposure risks, particularly in intensive swine operations (DANMAP 2015 Report).
Antimicrobial resistance in farm workers in the US
Studies in the United States have revealed even more alarming statistics. Farm workers in intensive animal farming environments were found to be 32 times more likely to develop antibiotic-resistant infections than the general population. This increased risk was attributed to prolonged exposure to resistant bacteria and antibiotic residues in animal feed and the environment (Silbergeld et al., 2008). The close interaction between humans and animals in confined spaces fosters the transfer of resistant genes, making these workers a vulnerable group.
Mechanisms of resistance spread
The spread of AMR from livestock to humans can occur through several pathways:
Direct contact: Handling animals and exposure to manure or bodily fluids.
Contaminated food: Consumption of undercooked or improperly handled meat products.
Environmental contamination: Water and soil contaminated with antibiotics or resistant bacteria.
What can be done?
Even in countries where antimicrobials reduction legislation has been in place for almost two decades, such as Germany or Sweden, new resistance cases are constantly discovered. In supermarkets around the world, meat contaminated with antibiotic-resistant superbugs is still a common occurrence. And in antibiotic resistance hot spots, “from 2000 to 2018, P50 increased from 0.15 to 0.41 in chickens—meaning that 4 of 10 antibiotics used in chickens had resistance levels higher than 50%. P50 rose from 0.13 to 0.43 in pigs and plateaued between 0.12 and 0.23 in cattle” (Dall, 2019). These hot spots are spread across the globe, from south and northeast India, northeast China, north Pakistan, Iran, and Turkey, to the south coast of Brazil, Egypt, the Red River Delta in Vietnam, and areas surrounding Mexico City, Johannesburg, and more recently Kenya and Morocco.
Globally, antimicrobial use in animals is projected to increase by 67% by 2030, especially in low- and middle-income countries where regulatory frameworks are weaker. Denmark provides a successful model for mitigating these risks. Policies such as the “Yellow Card” scheme have reduced antibiotic use in pigs by promoting alternative husbandry practices and strict monitoring. This approach has also reduced the prevalence of resistant bacteria in animal populations, offering a replicable strategy for other nations (Alban et al., 2017).
Recommendations for mitigation
Strengthening surveillance: Programs like DANMAP should be implemented globally to monitor antibiotic usage and resistance trends in animals and humans.
Reducing antibiotic use: Phasing out non-therapeutic uses of antibiotics, particularly as growth promoters, and avoiding Critically Important Antimicrobials for Human Medicine.
Protecting workers: Providing personal protective equipment (PPE) and regular health screenings for farm workers.
Public awareness: Educating communities about the risks of AMR and promoting safe food handling practices.
The evidence from Denmark and the U.S. underscores the urgent need to address AMR in animal production settings. Protecting farm workers from AMR not only safeguards their health but also prevents the spread of resistant pathogens across the wider public.
References
Bager, F., et al. (2015). DANMAP 2014: Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food, and humans in Denmark. Retrieved from DANMAP Report.
Industrial food animal production, antimicrobial resistance, and human health. Annual Review of Public Health, 29(1), 151-169.
Alban, L., et al. (2017). Assessment of the risk to public health due to use of antimicrobials in pigs—An example of pleuromutilins in Denmark. Frontiers in Veterinary Science, 4, 74. DOI.
Sustainability will push more by-products into pig feed – Keep track of mycotoxins!
Mycotoxin Team EW Nutrition
Most grains used in feed are susceptible to mycotoxin contamination, causing severe economic losses all along feed value chains. As skyrocketing raw material prices force producers to include a higher proportion of economical cereal by-products in the feed, the risks of mycotoxin contamination likely increase. This article reviews why mycotoxins cause the damage they do – and how effective toxin-mitigating solutions prevent this damage.
Mycotoxin contamination of cereal by-products requires solutions
Cereal by-products may become more important feed ingredients as grain prices increase. However, from a sustainability point of view and considering population growth, using cereal by-products in animal feed makes much sense. Distiller’s dried grains with solubles (DDGS) are a good example of how by-products from food processing industries can become high-quality animal feed.
Figure 1: By-products are a crucial protein source (data from FEFAC Feed&Food 2021 report)
Still, research on what happens to mycotoxins during food processing shows that mycotoxins are concentrated into fractions that are commonly used as animal feed (cf. Pinotti et al., 2016; Caballero and Heinzl, 2022). To safeguard animal health and performance when feeding lower-quality cereals, monitoring mycotoxin risks through regular testing and using toxin-mitigating solutions is essentialy.
Problematic effects of mycotoxins on the intestinal epithelium
Mostmycotoxinsare absorbedin the proximal partof the gastrointestinal tract. Thisabsorption can behigh, as in the case of aflatoxins(ca. 90%), but also very limited, as in the case of fumonisins(< 1%); moreover, it depends on the species.Notably, a significant portion ofunabsorbedtoxinsremains within thelumenof the gastrointestinal tract.
Importantly, studies based on realistic mycotoxin challenges (e.g., Burel et al., 2013) show that the mycotoxin levels necessary to trigger damaging processes are lower than the levels reported as safe by EFSA, the Food Safety Agency of the European Union. The ultimate consequences range from diminished nutrient absorption to inflammatory responses and pathogenic disorders in the animal (Figure 2).
Figure 2: Mycotoxins’ impact on the GIT and consequences for monogastric animals
1. Alteration of the intestinal barrier‘s morphology and functionality
Several studies indicate that mycotoxins such as aflatoxin B1, DON, fumonisin B1, ochratoxin A, and T2, can increase the permeability of the intestinal epithelium of poultry and swine (e.g., Pinton & Oswald, 2014). This is primarily a consequence of the inhibition of protein synthesis.
As a result, there is an increase in the passage of antigens into the bloodstream (e.g., bacteria, viruses, and toxins). This increases the animal’s susceptibility to infectious enteric diseases. Moreover, the damage that mycotoxins cause to the intestinal barrier entails that they are also being absorbed at a higher rate.
2. Impaired immune function in the intestine
The intestine is a very active immune site, where several immuno-regulatory mechanisms simultaneously defend the body from harmful agents. Immune cells are affected by mycotoxins through the initiation of apoptosis, the inhibition or stimulation of cytokines, and the induction of oxidative stress.
It is known that fumonisin B1 may induce changes in the balance of sphingolipids at the cellular level, including for gastrointestinal cells. This facilitates the adhesion of pathogenic bacteria, increases in their populations, and prolongs infections, as has been shown in the case of E. coli. The colonization of the intestine of food-producing animals by pathogenic strains of E. coli and Salmonella also poses a risk to human health.
4. Interaction with bacterial toxins
When mycotoxins induce changes in the intestinal microbiota, this can increase the endotoxin concentration in the intestinal lumen. Endotoxins promote the release of several cytokines that induce an enhanced immune response, causing inflammation, thus reducing feed consumption and animal performance, damage to vital organs, sepsis, and death of the animals in some cases.
The synergy between mycotoxins and endotoxins can result in an overstimulation of the immune system. The interaction between endotoxins and estrogenic agents such as zearalenone, for example, generates chronic inflammation and autoimmune disorders because immune cells have estrogen receptors, which are stimulated by the mycotoxin.
Increased mycotoxin risks through by-products? Invest in mitigation solutions
To prevent the detrimental consequences of mycotoxins on animal health and performance, proactive solutions are needed that support the intestinal epithelium’s digestive and immune functionality and help maintain a balanced microbiome in the GIT. This becomes even more important as the current market conditions will likely engender a long-term shift towards including more cereal by-products in animal diets.
Trial data shows that EW Nutrition’s toxin-mitigating solution SOLIS MAX 2.0 provides adequate protection against feedborne mycotoxins. The synergistic combination of ingredients in SOLIS MAX 2.0 prevents mycotoxins from damaging the animals’ gastrointestinal tract and entering the bloodstream and additionally acts as antioxidant and liver-protecting:
Figure 3: Moa of Solis Max 2.0
In-vitro study shows strong mitigation effects of SOLIS MAX 2.0 against a wide range of mycotoxins
Animal feed is often contaminated with two or more mycotoxins, making it essential for an anti-mycotoxin agent to be effective against a wide range of different mycotoxins. A trial with SOLIS MAX 2.0 was conducted at an independent laboratory in Spain with an inclusion level of the product of 0.10% (equivalent to 1 kg per ton of feed). A phosphate buffer solution at pH 7 was prepared to simulate intestinal conditions in which a portion of the mycotoxins may be released from the binder (desorption). The following mycotoxins were evaluated in the test (see Table 1):
Table 1: Mycotoxin challenges
Each mycotoxin was tested separately by adding a challenge to buffer solutions, incubating for one hour at 41°C, to establish the baseline (table). At the same time, a solution with the toxin challenge and Solis Max 2.0 was prepared, incubated, and analyzed for the residual mycotoxin to find the binding efficacy. All analyses were carried out using high-performance liquid chromatography (HPLC) with standard detectors.
Figure 4: SOLIS MAX 2.0 (1 kg/t of feed) adsorption capacity against different mycotoxins (%)
The results (Figure 4) demonstrate that SOLIS MAX 2.0 is a highly effective solution against the most common mycotoxins in raw materials and animal feed.
Mycotoxin risk management for better animal feed
A healthy gastrointestinal tract is crucial to animals’ overall health: it ensures that nutrients are optimally absorbed, provides adequate protection against pathogens through its immune function, and is key to maintaining a well-balanced microflora. Even at levels considered safe by the European Union, mycotoxins can compromise different intestinal functions, resulting in lower productivity and susceptibility to disease.
The globalized feed trade, which spreads mycotoxins beyond their geographical origin, climate change, and raw material market pressures additionally escalate the problem. On top of rigorous testing, producers should mitigate unavoidable mycotoxin exposures by using solutions such as SOLIS MAX 2.0 – for stronger animal health, welfare, and productivity.
References
Antonissen, Gunther, An Martel, Frank Pasmans, Richard Ducatelle, Elin Verbrugghe, Virginie Vandenbroucke, Shaoji Li, Freddy Haesebrouck, Filip Van Immerseel, and Siska Croubels. “The Impact of Fusarium Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases.” Toxins 6, no. 2 (January 28, 2014): 430–52. https://doi.org/10.3390/toxins6020430.
Burel, Christine, Mael Tanguy, Philippe Guerre, Eric Boilletot, Roland Cariolet, Marilyne Queguiner, Gilbert Postollec, et al. “Effect of Low Dose of Fumonisins on Pig Health: Immune Status, Intestinal Microbiota and Sensitivity to Salmonella.” Toxins 5, no. 4 (April 23, 2013): 841–64. https://doi.org/10.3390/toxins5040841.
Burton, Emily J., Dawn V. Scholey, and Peter E. Williams. “Use of Cereal Crops for Food and Fuel – Characterization of a Novel Bioethanol Coproduct for Use in Meat Poultry Diets.” Food and Energy Security 2, no. 3 (September 19, 2013): 197–206. https://doi.org/10.1002/fes3.30.
Ghareeb, Khaled, Wageha A. Awad, Josef Böhm, and Qendrim Zebeli. “Impacts of the Feed Contaminant Deoxynivalenol on the Intestine of Monogastric Animals: Poultry and Swine.” Journal of Applied Toxicology 35, no. 4 (October 28, 2014): 327–37. https://doi.org/10.1002/jat.3083.
Mani, V., T. E. Weber, L. H. Baumgard, and N. K. Gabler. “Growth and Development Symposium: Endotoxin, Inflammation, and Intestinal Function in livestock1,2.” Journal of Animal Science 90, no. 5 (May 1, 2012): 1452–65. https://doi.org/10.2527/jas.2011-4627.
Obremski, K. “The Effect of in Vivo Exposure to Zearalenone on Cytokine Secretion by Th1 and Th2 Lymphocytes in Porcine Peyer’s Patches after in Vitro Stimulation with LPS.” Polish Journal of Veterinary Sciences 17, no. 4 (2014): 625–32. https://doi.org/10.2478/pjvs-2014-0093.
Oswald, I. P., C. Desautels, J. Laffitte, S. Fournout, S. Y. Peres, M. Odin, P. Le Bars, J. Le Bars, and J. M. Fairbrother. “Mycotoxin Fumonisin B1 Increases Intestinal Colonization by Pathogenic Escherichia Coli in Pigs.” Applied and Environmental Microbiology 69, no. 10 (2003): 5870–74. https://doi.org/10.1128/aem.69.10.5870-5874.2003.
Pinotti, Luciano, Matteo Ottoboni, Carlotta Giromini, Vittorio Dell’Orto, and Federica Cheli. “Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts.” Toxins 8, no. 2 (February 15, 2016): 45. https://doi.org/10.3390/toxins8020045.
Pinton, Philippe, and Isabelle Oswald. “Effect of Deoxynivalenol and Other Type B Trichothecenes on the Intestine: A Review.” Toxins 6, no. 5 (May 21, 2014): 1615–43. https://doi.org/10.3390/toxins6051615.
Building and boosting the immunity shield of pigs
Conference report
A well-functioning immune system is vital for the survival and performance of animals. It helps piglets cope with challenging periods, such as their first days of life or weaning. Measures can be taken around farrowing to support the piglets during their first days by enhancing the quality and quantity of colostrum and helping them develop their own immune system as fast as possible.
Adequate feeding of the sow before and around farrowing
Feeding of both the sow and the piglet has an important influence on farrowing, the health of the sow, colostrum and milk production, piglets’ development of immunity, and their later performance. A well-functioning immune system is crucial for the piglets to withstand upcoming challenges such as weaning.
Colostrum quality can be influenced by feeding
Newborn piglets have no functioning immunity system. They rely entirely on immunoglobulin G (IgG) absorption from colostrum within the first few hours after birth to establish their immunity shield. Dr. Megan Edwards, Animal Nutrition Consultant from Integral Nutrition (S) Pte Ltd, highlighted the payback of adequate colostrum quality and intake: Adequate colostrum intake can positively affect whole-of-life immunity and, ultimately, growth performance. The contained IgG is essential for providing passive immunity to piglets, protecting them from infections during their early days of life when their immune systems are still developing. There is a positive correlation between the amount of IgG they absorb from colostrum and their performance. This benefit of colostrum intake is independent of birth weight.
We have a 3-week window to influence colostrogenesis. However, the fat content of colostrum is determined in the last 48 hours before farrowing. According to Dr. Edwards, influencing colostrum quality is generally easier than affecting quantity. She identified several compounds that can serve as immunomodulators, such as MCFAs, yeast extracts, and butyrate. However, by moving IgG to colostrum and milk in late gestation and lactation, the sow compromises her immunity status by depleting her own reserves for about two weeks.
Feeding at farrowing
Sow body condition has been shown to have more impact on colostrum yield than feeding level. The highest colostrum yield was achieved when sows entered the farrowing unit with a moderate body condition (3-3.25 – the ribs, spine, and hip bones can only be felt with firm pressure but are not visibly prominent). Overfeeding should be avoided to prevent sows from becoming excessively fat pre-farrowing.
Sows experience increased energy demands during farrowing due to the physical demands of parturition and the physiological changes occurring in their bodies. Dr. Edwards does not encourage withholding feed on the day of farrowing and suggests offering up to 3kg if the sow has the appetite. Feeding just below the energy requirement helps the sow to mobilize her own body fat.
Many producers mistakenly withhold feed on the day of the farrow to reduce the incidence of constipation. Feeding, however, stimulates gut motility. Withholding feed can slow down gut transit time and actually increase the likelihood of constipation.
Piglet feeding for developing intestinal tract and immune system
In piglet feeding, two strategies are decisive: the early intake of immunoglobulins via colostrum to protect the piglets against pathogens during their first days of life and the offering of creep feed to stimulate their intestinal development.
High-quality colostrum as much and as soon as possible
When the piglets are born, it is of the highest importance that they ingest colostrum as much and as soon as possible. The piglet can only absorb intact large IgG molecules, the primary source of passive immunity, before gut closure, which begins about 6–12 hours after birth and progresses rapidly to completion in about 24 hours. In any case, the sow will start producing milk by this time and no more colostrum. The concentration of colostrum IgG decreases by 50% within 6 hours after the birth of the first piglet. The target is for piglets to consume 250 g of colostrum within the first 24 hours, ideally within the first 6 hours. However, about 30% of sows produce insufficient colostrum.
Figure 1: Mortality of piglets until 42 days of age according to intervals of birthweight and colostrum intake (Hasan et al. 2019; the numbers of piglets are shown in parenthesis)
Split suckling jump-starts weak piglets
Split suckling is an effective management strategy to improve piglets’ access to colostrum and milk, particularly in increasingly common situations where sows give birth to large litters. This involves temporarily separating the more vigorous piglets from the sow to allow smaller or weaker piglets better access to the teats. This method helps ensure that all piglets receive adequate nutrition during the critical early hours after birth.
Large litters provoke energy deficiency in piglets
Piglets are born with limited energy reserves (glycogen and brown fat tissue). Ingestion of colostrum is associated with a considerable increase in the metabolic rate, contributing to maintaining body temperature. About 70% of the piglets’ energy requirement in the first 72 hours is provided by colostrum. “Most piglets that die within this period do so primarily due to energy deficiencies rather than immune-related issues. The trend towards larger litter sizes has exacerbated the issue of energy deficiency,” stated Dr. Edwards.
Creep feeding
The primary role of creep feed is to accelerate the development of the piglets, their digestive and immune systems, and their gut microbiome, not for weight gain. Creep feeding helps evolve digestive enzymes and acid secretion necessary for breaking down complex carbohydrates and proteins. This early feeding supports piglets in adapting to solid diets, mitigating stress during weaning.
Creep feeding also helps piglets develop an oral tolerance to avoid transient hypersensitivity due to various dietary ingredients. This process is essential for preventing allergic reactions and hypersensitivity, which can occur when the immune system mistakenly identifies harmless substances as threats. It takes about two weeks for the piglet to recognize an ingredient as a nutrient, not a pathogen. To facilitate this process, she recommends that creep diets contain a broad range of ingredients at low doses. This approach gradually exposes piglets to various nutrients, allowing their immune systems to adapt without overwhelming them with high concentrations of any single ingredient.
Mycotoxins must be managed – even in piglets
The significance of mycotoxins in piglets is often underestimated due to their relatively small feed intake. However, there is substantial evidence that mycotoxins can be transferred from sows to piglets through colostrum and milk, which can have profound health implications.
Dr. Edwards is convinced that managing mycotoxins is managing immunity. Mycotoxins are transferrable via the placenta, colostrum, and milk. There is a positive correlation between the mycotoxin levels in feed and colostrum. For example, adverse effects seen in piglets consuming colostrum with low doses of deoxynivalenol (DON) include:
• Decreased villus height
• Reduced mucosal integrity
• Increased inflammation
• Alternated immune response
The bottom line is that mycotoxins are a real and everyday risk to the immune quality of your piglets.
Nutrition influences piglets’ immune development
Dr. Edwards summarized that adequate nutrition is fundamental for developing a strong immune system in pigs, which is the basis for high performance. By focusing on the appropriate nutrition of the sow, ensuring an adequate intake of high-quality colostrum intake in piglets, and implementing creep feeding strategies, producers can significantly enhance the lifetime health and productivity of their piglets from an early age.
EW Nutrition’s Swine Academy took place in Ho Chi Minh City and Bangkok in October 2024. Dr. Megan Edwards, an Australian animal nutrition consultant with global research and praxis experience and a keen interest in immuno-nutrition and functional nutrients, was an esteemed guest speaker at this event.
Optimising Weaner Performance
Conference report
To optimize weaner performance, it is helpful to understand the stressful situation the piglets are facing. In contrast to weaning in nature, which occurs gradually until completion at approximately 4-5 months, weaning in intensive pig operations is an acute process, typically occurring at 3-4 weeks of age. This critical phase subjects piglets to multiple stressors, which can have cumulative effects on their health and development.
Furthermore, the weaning process usually coincides with a decline in the levels of maternally derived antibodies. As these antibody levels decrease, piglets become increasingly susceptible to infections, particularly during the stressful transition to solid food and movement from the sow to the new nursery environment. Managing the weaning process carefully is crucial to minimize stress and support immune function.
Weaning factors that influence a successful weaning
Several aspects must be considered to provide the weaning piglets with the best conditions, and diverse measures must be taken. These measures range from the social environment to nutrition, hygiene, and the people dealing with the pigs.
Social dynamics
When forming nursery groups, aim to keep pigs in these groups as long as possible. Moving all pigs to their new environment at the same time can promote a more rapid establishment of social stability. If possible, once weaning groups are selected and placed in the nursery, keep these groups together to harvest. Any change in the pig group will again result in the need for a new hierarchy to be established, along with fighting and disrupting the group. “Allow newly selected nursery groups to establish their hierarchy by avoiding interventions during the first 48 hours, except to treat sick or injured pigs”, recommends Dr. Parke. “A well-enriched environment, such as chewable ropes and toys, can help reduce stress levels and may reduce the frequency of abnormal behaviors such as tail biting and aggression.”
Environmental management
The piglets should be kept at an optimal temperature between 27-30°C – depending on floor type, weight, and age of piglets. Adding a heat lamp/floor mat warm area for just-weaned piglets will further assist thermoregulation and minimize stress through the weaning transition.
Proper ventilation is crucial for maintaining air quality and preventing the buildup of harmful gases like ammonia. Good airflow helps regulate temperature and humidity, reducing stress on the pigs. However, care must be taken to avoid drafts that can chill young pigs. For example, a draft of 0.5 m/second can ‘feel’ like an 8°C drop for the piglet.
Targets for gas, dust, and bacteria levels
Risk factor
Gas
Total dust
Respirable dust
Bacteria
Ammonia
Hydrogen sulphide
Carbon dioxide
Target levels
<10ppm (20ppm max.)
<5ppm
<3,000ppm (aim for <1,500ppm)
2.4mg/m3
0.23mg/m3
100,000 CFUs/m3
Flooring and pen materials should be robust, in good condition, and easily cleaned to reduce the risk of skin abrasions and subsequent infections.
Provide sufficient space (recommended 0.19 m2/8 kg pig on slat/solid floor) in pens to minimize competition for feed and water and to reduce social stress among piglets.
Weaner pigs benefit from using the same type of feeder in the nursery as in the farrowing room. This consistency can help to reduce stress and anxiety during the transition to the nursery and increase the feed intake during the first few days post-weaning.
Nutritional support
Weaning stress and poor feed intake post-weaning commonly result in dysbiosis and a decrease in villus height in the small intestine of piglets. Associated digestive impairment and altered gut morphology can lead to decreased nutrient absorption, as well as enteric and systemic health issues. A palatable transition diet, from 7 days pre- to 7 days post-weaning, is recommended to keep piglets eating. The composition or form of the transition diet should remain the same during this period. Consider using functional feed additives, such as phytomolecules or egg immunoglobulins, to support microbial modulation and gut integrity.
Ensure piglets have access to fresh, cool, and clean water (minimum water flow of 0.5-0.7L/minute), with enough drinking space (maximum of ten piglets per drinker). Consider providing additional water supply points (e.g., bowls) in the first week.
Hygiene and biosecurity
All-in, all-out management avoids the mixing of different age groups. It is particularly beneficial for weaner pigs, as it helps minimize disease transmission. After removing each batch of weaners, the nursery must be thoroughly cleaned, disinfected, and dried. This includes not just the floors but also feeders, waterers, and any equipment used in the room.
There should be strict rules for everything that comes through the external perimeter fence. Internal biosecurity is also essential, e.g., changing into clean, disinfected boots and thoroughly washing hands when moving between rooms/buildings.
Routine monitoring
Regular and proactive monitoring of weaner pigs, including carefully observing their behavior, is essential for ensuring their health and optimizing growth performance. By implementing effective monitoring strategies, producers can identify potential challenges early and take timely interventions to minimize negative impacts.
Pig positive people
Dr. Parke emphasized that the attitude and skills of stockpersons play a significant role in reducing stress during this vulnerable weaning transition period. Positive handling can improve piglet welfare and their future response to human contact, which is crucial for their short and long-term production performance.
Piglets that receive positive handling are likelier to demonstrate affiliative behaviors towards humans, facilitating smoother transitions during weaning and enhancing their overall development. Stockpersons should be trained to recognize signs of stress or discomfort in pigs.
Collaborative approach
“Collaboration is critical for successful weaning; we can’t have silos in pig production unless it’s to store feed,” joked Dr. Parke. “By adopting a proactive approach that emphasizes collaboration and comprehensive management strategies across the production system, pig welfare and long-term productivity of the herd will be enhanced,” she concluded.
EW Nutrition’s Swine Academy took place in Ho Chi Minh City and Bangkok in October 2024. Dr. Merideth Parke, Global Application Manager, Swine, was one of the highly experienced speakers of EW Nutrition. She is a veterinarian who strongly focuses on swine health and preventive medicine.
The abrupt transition from the sow’s milk to solid feed, combined with environmental changes and social restructuring, creates a challenging situation for young piglets. Weaning is a critical phase that subjects piglets to multiple stressors, which can have cumulative effects on their health and development. Weaning stressors are inevitable in the piglets’ development; however, effective pre-weaning management practices can significantly minimize their impact on health and performance.
Pre-weaning measures help improve weaner performance.
“Successful weaning of piglets is a multifaceted process that requires careful management and strategic planning well before the actual weaning event,” says Dr. Merideth Parke, Global Application Manager, Swine, EW Nutrition. She emphasized the following key pre-weaning factors that can significantly influence success during this most critical time.
Genetics
Selecting the right genetics for your specific production system is crucial for ensuring successful weaning outcomes. The genetic traits of sows with a direct impact include sow resilience, litter size, piglet birth weights, and overall growth rates.
Furthermore, it is decisive for piglets’ survival and performance that the sow shows strong maternal instincts, and, to ensure enhanced colostrum and milk uptake, an adequate number of functional teats and high milk production.
Gestation and farrowing influencers
Having an optimal body condition score at farrowing is essential for sows. Being overweight or underweight poses the risk of prolonged farrowing and reduced colostrum and milk production.
On the piglet side, prolonged farrowing negatively impacts their vitality at birth, which correlates with reduced colostrum uptake and increased pre-weaning mortality rates.
Environmental conditions
Newborn piglets are particularly vulnerable to hypothermia and have a minimal critical temperature of 33-35°C. Below this range, they struggle to maintain their body temperature, which can lead to increased mortality rates. Cold piglets are less likely to suckle, compromising their energy reserves and ability to maintain body temperature.
In contrast, lactating sows have an optimal temperature of 18-22°C to maximize feed intake and milk production. Therefore, to balance the temperature needs of sow and piglets, it is essential to create a controlled temperature, draft-free creep microenvironment for piglets.
Hygiene
The hygiene of farrowing crates plays an essential role in the successful weaning of piglets. Maintaining a clean environment significantly impacts the health and growth of piglets, ultimately influencing their survival and weight at weaning. “We must consider the time spent cleaning, disinfecting, and drying farrowing crates an investment, not a cost,” emphasized Dr. Parke. “Doing these routine tasks really well will inevitably reduce the time spent treating sick pigs.”
Lactation phase
The primary objective of pre-weaning measures is to ensure adequate colostrum and milk production throughout lactation while beginning the adjustment to solid feed. Efforts should be directed toward facilitating nursing access for all piglets, with particular attention to smaller or weaker ones probably facing difficulties accessing teats.
Split suckling can be the method of choice for improving their colostrum and milk intake, particularly in large litters. For that measure, larger, more robust piglets are separated, allowing smaller or weaker piglets to nurse first. Once the weaker piglets have had sufficient time, the groups are swapped.
However, according to Dr. Parke, fostering piglets is recommended to be undertaken cautiously. “While it can be beneficial, it can significantly disrupt pathogen stability and teat hierarchy, particularly when it occurs after the first 24-48 hours of birth when piglets have established their preference for specific teats. This can increase fighting among piglets as they establish a new hierarchy. This aggression can result in injuries, especially for weaker or smaller piglets. Fighting can also cause damage to the sow’s udder, leading to infections or mastitis, compromising milk production and overall sow health,” she stated.
Nurturing the gut
Providing creep feed for a minimum of 7 days before weaning significantly boosts litter weight at weaning and reduces the risk of post-weaning fallback. Early exposure to solid feed accelerates the development of digestive enzymes and acid production, both essential for breaking down carbohydrates and proteins.
Combining pre-weaning creep feeding with high-quality, palatable post-weaning diets has been shown to lead to piglets with increased post-weaning feed intake, health, and growth during the critical post-weaning transition.
As the swine sector evolves with larger litter sizes and, therefore, increased competition for sows’ milk, using milk replacers is becoming common practice. Following a “little and often” approach by providing small amounts of fresh milk replacer multiple times a day is most effective. The hygienic preparation and feeding of milk replacers go without saying to prevent the growth of harmful bacteria and molds that can lead to diarrhea and other health issues in piglets.
Collaborative approach
The swine industry is grappling with mounting challenges associated with post-weaning stress and health, exacerbated by the prohibition of AGPs and the use of pharmacological levels of dietary zinc and copper in many regions. Addressing these issues requires a coordinated strategy to improve piglet welfare and optimize production outcomes. “By adopting a proactive approach emphasizing collaboration and comprehensive management strategies across the production system, piglet welfare and long-term productivity can be enhanced,” concluded Dr. Parke.
EW Nutrition’s Swine Academy took place in Ho Chi Minh City and Bangkok in October 2024. Dr. Merideth Parke, Global Application Manager, Swine, was one of the highly experienced speakers of EW Nutrition. She is a veterinarian who strongly focuses on swine health and preventive medicine.